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This advanced option course discusses the search for a general theory of learning and inference 
in biological brains. It draws upon diverse themes in the fields of psychology, neuroscience, 
machine learning and artificial intelligence research. We begin by posing broad questions. 
What are brains for, and what does it mean to ask how they “work"? Then, over a series of 
lectures, we discuss parallel computational approaches in machine learning/AI and 
psychology/neuroscience, including reinforcement learning, deep learning, and Bayesian 
methods. We contrast computational and representational approaches to understanding 
neuroscience data. We ask whether current approaches in machine learning are feasible and 
scaleable, and which methods - if any - resemble the computations observed in biological 
brains. We review how high-level cognitive functions - attention, episodic memory, concept 
formation, reasoning and executive control - are being instantiated in artificial agents, and how 
their implementation draws upon what we know about the mammalian brain. Finally, we 
contemplate the outlook for the future, and whether AI will be “solved” in the near future. 
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1. Building and understanding brains 
 
1.1 Introduction 
 
This course is written primarily for students and researchers working in the fields of psychology 
and neuroscience, who wish to understand more about recent advances in machine learning 
and artificial intelligence research. 
 
 

 
 
 
Let me begin with some definitions. Researchers in the field of cognitive and experimental 
psychology typically aim to understand the organisation of behaviour in humans and other 
animals, with a particular focus on how cognitive processes give rise to behaviour.  
Neuroscientists are concerned with the implementation of mental activity in the biological 
processes of the brain. Their research address questions such as how stimuli or actions are 
coded in neural circuits, how whole-brain networks contribute to perception, cognition and 
action. Both psychologists and neuroscientists construct predictive models of brain function 
and evaluate their models by comparison with empirically observed behavioural and neural 
data.   
 
By contrast, researchers in the field of artificial intelligence (AI) have the goal of building 
intelligent artificial systems, for example implemented as an autonomous agent exhibiting 
complex behaviours in a virtual environment (e.g. an avatar in a video game) or in the real 
world (e.g. a robot or driverless car). Defining what constitutes “intelligent” behaviour is 
challenging but some insight can be gained by examining the sorts of problems that are being 
addressed today (in 2018): researchers are attempting to build systems that can recognise 
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faces and objects with human-level expertise; that can translate fluently between the world’s 
languages; that can drive a car autonomously on the roads; or that can dextrously manipulate 
complex objects in an industrial setting.  Machine Learning (ML) is the name given to a field 
that initially grew at the intersection of statistics and computer science, and which uses 
optimisation techniques to make inferences from big data. Over the last 5-10 years, machine 
learning has provided some of the most promising solutions to complex problems faced by 
autonomous agents and is thus rapidly merging with the field of AI. The terms AI/ML will largely 
be used interchangeably here. 
 
One might think of the goal of AI/ML researchers as “engineering the brain” in contrast to that 
of researchers in psychology and neuroscience, whose work is aimed at “reverse engineering 
the brain”1.   
 
 

 
Let us continue with a bit of history.  The field of AI may be said to have been born in the mid-
1950s, with a summer conference that took place in Dartmouth, MA in 19562.  Delegates of 
this conference included many of the foundational figures in early AI research, including 
Marvin Minsky, Alan Newell, and Herb Simon, as well as key figures in the development of 20th 
century mathematics such as Ray Solomonoff (inventory of algorithmic probability) and Claude 
Shannon (father of information theory).  The initial proposal was that over the course of 2 
months, 10 key figures would assemble to contemplate how to build a machine that could 

                                                      
1 Helpful introductory reviews concerning the relationship between Psychology/Neuroscience and ML/AI are 
include Cox, D.D., and Dean, T. (2014). Neural networks and neuroscience-inspired computer vision. Curr Biol 
24, R921-R929, Hassabis, D., Kumaran, D., Summerfield, C., and Botvinick, M. (2017). Neuroscience-Inspired 
Artificial Intelligence. Neuron 95, 245-258, Marblestone, A.H., Wayne, G., and Kording, K.P. (2016). Toward an 
Integration of Deep Learning and Neuroscience. Front Comput Neurosci 10, 94. 
2 An interesting book that mixes science and gossip associated with this period in history is Anderson, J.A., and 
Rosenfeld, E., eds. (2000). Talking nets: An oral history of neural networks (MIT Press). 
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behave autonomously. The foundational premise was that all aspects of biological intelligence 
can, in principle, be distilled into an artificial system.  The purpose of the conference was to 
decide how to build such a system. It was proposed that “substantial progress can be 
made…within a single summer”. 
 

 
 
However, it turned out that rebuilding biological intelligence from scratch – and in particular, 
human intelligence – was a project that would require more than ten clever people and a single 
summer.  More than 50 years (and numerous setbacks) later, we are still arguably a long way 
from recreating in an artificial system even the level of intelligence displayed by (say) a mouse.  
In hindsight, perhaps that is not so surprising. Brains are complex organs. The average human 
brain, for example, contains ~1011 neurons each of which has synaptic connections with an 
average of 103 other cells. Christoph Koch, the renowned neuroscientist and head of the Allen 
Institute for Brain Science has suggested that the human brain is perhaps the “most complex 
device in the known universe” (and certainly the “most complex known device in the universe”) 
Yet more surprisingly, this fantastically complex organ runs on only ~20 watts of electricity, i.e. 
an energy budget comparable to that of a regular lightbulb.   
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Another way of envisaging the scale of this challenge is to consider the richness of the human 
mind. Humans are not just able to perform complex computations, like a calculator.  Rather, 
the distinctive property of human cognition seems is the rich conceptual knowledge that 
underlies our behaviour. We know that you get wet when it rains unless you are carrying an 
umbrella, and that you can’t make a salad out of a pair of socks. We can also use that 
knowledge to make new inductive inferences. For example, if I tell you that swans are birds 
and that all birds lay eggs, you can infer that swans lay eggs. How are we ever going to 
understand how to build a system that can learn, tabula rasa, to encode such rich knowledge 
of its environment, as humans do?  
 

1.2 Recent advances in AI research 
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It’s 2018. Unless you have been living under a stone, you probably haven’t failed to notice that 
there is a lot of interest in AI research at the moment. Across this course, we shall explain why 
there is such interest, and discuss what promise these new advances hold for the future. 
However, for the current purposes let us just briefly examine some recent successes in the 
field of AI research. In the figure above, the (nonlinear) timeline shows some landmark 
advances in AI systems. The salient feature is that whilst some major goals were met prior to 
the year 2000 (for example, IBM’s Deep Blue becoming world chess champion by beating Gary 
Kasparov), the majority of recent advances cluster at the right of the timeline. The last 5 years 
have seen artificial systems beat humans at the quiz game Jeopardy!, achieve superhuman 
performance at Atari 2600 video games by learning from pixel inputs and the game score alone 
(see video), master the ancient board game of Go, previously thought to be at least 10 years 
out of reach of current AI systems, beat humans at No limits hold ‘em poker, and so on3.  Things 
are moving fast. This is why there is lots of excitement at the moment, and discussions about 
whether AI will be “solved” in the near(ish) future. 
 
 

                                                      
3 See the following publications Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., 
Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al. (2015). Human-level control through deep 
reinforcement learning. Nature 518, 529-533, Moravcik, M., Schmid, M., Burch, N., Lisy, V., Morrill, D., Bard, 
N., Davis, T., Waugh, K., Johanson, M., and Bowling, M. (2017). DeepStack: Expert-level artificial intelligence in 
heads-up no-limit poker. Science 356, 508-513, Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., van den 
Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al. (2016). Mastering the 
game of Go with deep neural networks and tree search. Nature 529, 484-489. 
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In passing, I note that there is also a lot of money changing hands. These graphs show numbers 
(right) and value (left) of mergers/acquisitions in the fields of AI and machine learning. The 
largest bar is for 2017. The bar for 2018 will be even larger.  AI is currently a lucrative field to 
be working in. 
 

 
Despite this enthusiasm, you might think that the goal of “solving” AI – that is, of building an 
artificial system that exhibits the same level of intelligence as an average human – is still 
impossibly far off.  Of course, you could be right – but experts disagree. The figure above shows 
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the results of a survey4 conducted at the 2016 Neural Information Processing Systems (NIPS) 
conference, an annual meeting of ~5000 machine learning researchers.  The delegates were 
asked to rate the probability that human-level machine intelligence (HLMI) would be achieved 
at various points in the future. The average forecast estimated that there was a 50% chance 
that AI would be “solved” by 2066, that is, 50 years from the data of the survey. That is probably 
within the lifetime of many people reading this. Given the extraordinary societal changes that 
are likely to ensue from the development of HLMI, this is a quite astonishing prediction. 
 

 
You might reasonably think that AI researchers have a vested interest in responding 
optimistically to such a survey – after all, their job depends on it.  But there is one data point 
that has subsequently come to light that suggests that the researchers’ predictions might in 
fact be overly pessimistic.  Among the more detailed questions on the survey, participants were 
asked to forecast the likely future date of specific advances, such as when an AI system will be 
able to write a New York Times bestselling novel (2046, apparently).  Recall that in 2016, news 
had just broken that AlphaGo, an AI system that played Go built by Google Deepmind, had 
beaten former European champion Fan Hui in a 5-game match, but only after being trained on 
moves taken from a corpus of >30 million human games. One question thus was: “when will 
an AI system be able to master Go after having experienced only the same level of training as 
a human?”. The average prediction was that it would take ~12 years. In fact, that challenge 
was met within a year, with the publication of a paper describing “AlphaZero”, a related 
network that mastered Go, Chess and Shogi (Japanese Chess) after learning entirely by playing 
itself over the course of 3 days5, and even surpassed the performance of the original AlphaGo 
that was trained with human data. 
 
It is these recent advances, and others not detailed here, that underpin the excitement 
currently surrounding AI in the media.  In many countries, this excitement is translating into 
public policy initiatives. For example, in 2017 the Chinese government announced funding to 

                                                      
4 https://arxiv.org/pdf/1705.08807.pdf 
5 Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M., 
Bolton, A., et al. (2017). Mastering the game of Go without human knowledge. Nature 550, 354-359. 
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create 100,000 new PhD places for AI research in their national universities. Yes, 100,000. 
That’s not a typo. 
 

1.3.   Biological and artificial brains 
 

 
In this course, I am going to advance an argument about the future of AI. It is an argument that 
has historically been quite unfashionable, but, I think, is coming back into vogue. That 
argument is that in order to build artificial brains, we can look to biology for inspiration.  The 
reason that this argument has failed to gain traction is that there are important 
counterexamples in other domains, where attempts to copy biology failed to yield new 
workable technologies. The most oft-cited example is that of human flight.  For many years, 
humans attempted to build flying devices that drew inspiration directly from the wings of birds.  
These were not successful. Indeed, it was only by completely ignoring biology and pursuing 
another path (i.e. the invention of the jet engine) that human flight became a ubiquitous 
feature of our modern lives.  Many AI researchers still feel that the same principle holds for 
building brains. Biological brains are unpredictable, error-prone and tend to learn suboptimal 
policies (choosing the wrong insurance policy, and marrying the wrong person); why not 
dispense with these and allow principles of statistical optimisation to do a better job?  
However, as we shall see throughout the course, there are numerous examples where major 
progress in AI was achieved precisely because researchers directly imported an idea gleaned 
from the study of animal behaviour and/or biological brains. 
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However, the major aim of this course is not to describe how biology can inform AI, but vice 
versa – to emphasise what psychologists and neuroscientists can learn from recent progress in 
ML/AI.  The principle that best summarises this view comes from a quote by Nobel Laureate 
Richard Feynman, who famously said “what I cannot create, I do not understand”. In other 
words, in order to truly understand something, you have to be able to build it. Anyone who has 
attempted to simulate a brain process or behaviour using a computational model knows that 
this is true. Here, we are going to argue that psychologists and neuroscientists have a lot to 
learn from AI researchers who are trying to build brains, because doing so forces them to really 
understand how a brain works. 
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In fact, one might make a case for an even more outlandish claim. Over the course of the 20th 
century, some disciplines developed general theories that provide a framework for all new 
understanding in that field. For example, biologists all subscribe to the theory of natural 
selection, and physicists (more or less) buy into Einstein’s standard model of relativity.  
However, such a general theory has been elusive in psychology and neuroscience. We 
conspicuously lack a general theory of brain function. There have been various past attempts 
to formulate such a theory – one might point to the past movements of Behaviourism, 
Connectionism, or Bayesianism – but these have all (I would argue) been shown to have been 
inadequate as full descriptions of brain function. Currently, there is virtually no attempt being 
made to formulate such a general theory in the fields of psychology and neuroscience.  
Strikingly, however, such a general theory is being formulated, discussed and implemented as 
we speak – but not in the corridors of psychology and neuroscience departments. Rather, it is 
AI researchers that are beginning to build such a theory. One of the major aims of this course 
is to communicate that theory back to the social and biological sciences. 
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Why do psychologists/neuroscientists and AI/ML researchers not get together more and share 
their ideas?  In part, they do. The fields have gone through rich periods of cross-fertilisation, 
dating back to the 1950s.  One of the more recent of these periods occurred about 10 years 
ago, when neuroscientists awoke to the rich theoretical framework provided by reinforcement 
learning, and its potential as a theory of brain function (notably, this theory was in turn inspired 
by much early work aimed at understanding animal learning, conducted in psychology 
departments). However, one salient barrier to knowledge exchange is that researchers in 
psychology/neuroscience and AI/ML speak different languages6.  The language used to 
describe biological brains typically alludes to the constituent parts of a neural system, that is 
cell types and brain areas; and the coding principles and cognitive constructs that allow the 
system to function. By contrast, researchers in ML/AI have converged on a different way of 
thinking about neural systems, which is guided by principles of function optimisation.  A brain 
is a model of function which is optimised to minimise some cost, under a set of constraints 
implemented in processing architectures. These terms have yet to become part of the lingua 
franca of psychology/neuroscience research. 
 
In part, one might argue that the gap arises because researchers in machine learning are 
principally concerned with – the clue is in the name – learning.  Our techniques for measuring 
learning are grossly impoverished in psychology and neuroscience. This is largely due to 
technical limitations. Learning takes time. It is logistically complex to run studies in which 
participants return day after day to undertake a task. In experimental animals, where repeated 
experimentation is possible, there are other challenges. For example, single-cell recording 
techniques do not permit the same cell to be tracked over more than a day or two.  Of note, 
this may be changing with the advent of new optical imaging methods. 

                                                      
6 Marblestone, A.H., Wayne, G., and Kording, K.P. (2016). Toward an Integration of Deep Learning and 
Neuroscience. Front Comput Neurosci 10, 94. 



November 2018 15 

 

 
It is possible to illustrate by considering some of the widely accepted theories about the 
functional neuroanatomy of the primate brain.  In the figure above, I illustrate some brain 
regions and their associated proposed functions.  For example, most first year undergraduate 
students in psychology/neuroscience are taught that the hippocampus and surrounding medial 
temporal lobe are critical for the functions of episodic memory and spatial navigation, whereas 
habit-based learning and action selection depend critically on the basal ganglia and overlying 
medial prefrontal cortex. These theories are backed up by extensive evidence from lesion 
studies, single-cell recording techniques, and functional brain imaging studies (as well as a 
plethora of new methods from synthetic biology). 
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However, if we look at the same functions from the perspective of AI/ML, they have very 
different names.  There is general agreement that episodic memory and navigation require 
“one-shot” learning and/or a “model of the world”, whereas habit-based action selection is 
known as “model-free RL”.  To communicate better, researchers in the two fields need to 
establish a common language. 
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However, before we assume that researchers in psychology/neuroscience and AI/ML never 
share ideas, let us not forget that there is a discipline where they can (and do) come together. 
It’s known as cognitive science. Cognitive science was the real fruit of that Dartmouth 
conference in the 1960s and has since become a rich field that synthesises ideas not just from 
psychology, neuroscience and AI, but also from anthropology, linguistics and philosophy. A 
recent textbook7 offers a contemporary perspective on cognitive science and may be a useful 
accompaniment to this course. 
 

1.4.   The computational approach 
 

 
 
Next, let us consider the general framework under which psychologists and neuroscientists 
conduct their research.  The bread and butter of an experiment in our field are the 
independent variables we manipulate, and the dependent variables we measure. As 
psychologists, we typically control the stimuli in an experiment. For example, we might present 
participants with a psychophysical stimuls (e.g. a grating), an image (e.g. face), a set of items 
to be remembered (e.g. a list of words) or an auditory stimulus (such as a piece of music to be 
rated).  We collect behavioural data, whether in the form of choices or reaction times, eye 
movements, or physiological measures such as galvanic skin response.  The goal of our 
research is to understand some computational principle by which inputs (stimuli) are 
converted into outputs (responses).  That computational principle is unobservable and must 
be inferred from the relation between inputs and outputs. We call the resulting principle a 
model. 
 

                                                      
7 Butz, M., and Kutter, E.F. (2017). How the mind comes into being: Introducing Cognitive Science from a 
functional and computational perspective (Oxford University Press). 
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What do we mean by a “model”?  A model is a simulation of the computational processes that 
intervene between inputs and outputs. The success of our model is evaluated by how well it 
fits the data. An ideal model will perfectly recreate the conversion of stimuli into responses 
and allow us to make highly accurate new predictions about how people will behave.  To quote 
Norbert Weiner, the founder of the field of cybernetics: “The best model of a cat is another 
cat, or preferably the same cat”.  If our model is literally the same as the actual processes we 
are trying to understand, the we have succeeded in understanding the brain.  Of course, given 
the abovementioned complexity of brains, this is unlikely.  It’s more likely that our model will 
be an approximation.  In different subdisciplines within psychology and neuroscience, different 
approaches to this approximation are made.  For example, cognitive psychologists have tended 
to favour the sort of model shown above, in which component processes are given descriptive 
labels that eschew precise quantification of how information is converted (or transduced) from 
an input to an output. In psychophysics and sensory neuroscience (as well as machine 
learning), the favoured model often has a compact mathematical description, i.e. it can be 
written as a set of closed form equations. This offers the opportunity to make clearer 
predictions about how humans or experimental animals will behave in novel settings. 
Unfortunately, however, given the complexity of the mind and the richness of behaviour, 
computational neuroscientists have largely limited their ambition to understanding relatively 
simple processes, such as early sensory transduction or skilled motor control, avoiding any 
detailed modelling of central or executive processes that most consider integral to intelligence. 
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So, returning to our schematic, we can include the sorts of models built by cognitive 
psychologists. 
 
 
 

 
 
However, as alluded to above, mathematics can provide a more precise language for 
formulating a theory of brain function.  A useful approach is to characterise the information 
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processing steps that intervene between sensation and action as a function, that takes as 
inputs some sensory data 𝑥 and processes it using a model characterised by parameters 𝜃 to 
provide a behavioural output variable 𝑦.  Our model now takes the form of a piece of computer 
code, that transforms simulated inputs into simulated outputs according to some principles 
that we think embody the workings of biological brains. 
 

 
Before proceeding further, let us just unpack what is meant here by a “function”.  An example 
function is shown on the left. This function performs an exponentiation of the input data 𝑥, 

producing an output 𝑦 that is simply 𝑥𝑘  where 𝑘 is the exponent. Here, 𝑘 is a free parameter 
whose value determines the precise mapping from 𝑥 to 𝑦. 
 
On the right, I show another example of a function, but this is closer to the sort of model that 
might be used in psychology. Now, the output 𝑦 corresponds to a probability of a given 
response, i.e. the fraction of times that a participant responds that a grating is tilted “right” (or 
clockwise) of the vertical meridian. However, now the function that transforms the input 𝑥 
(e.g. the tilt of the grating) into output 𝑦 is a logistic (sigmoidal) function with slope 𝑠.  In fact, 

the formula for this function is 𝑦 =
1

1+𝑒−𝑠𝑥
, describing the canonical for the psychometric 

function, but this is not crucial for our purposes. The point is that by positing a (sigmoidal) 
function that maps inputs onto outputs we are making a claim about the information 
processing steps by which a psychophysical observer makes judgments of orientation. 
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So, for completeness, we add to our schematic the sort of model that is typical in 
computational neuroscience (and psychophysics). 
 

 
 
This way of thinking of the brain might seem rather alien to those who are unaccustomed to 
it.  What do we mean that the brain can be described as function with free parameters?  What 
does this sort of description have to do with neurons and synapses? Well, as we shall see during 
this course, the function describes the neural architecture by which (sensory) information is 
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transduced en route to a response. In the language of machine learning, it provides the 
constraints that delimit the behaviour of the system. Information processing in biological 
brains is structured in stereoptyed ways, and it is the job of the computational neuroscientist 
to discern the nature of this structure. We know that neural systems have strong constraints, 
and that these tend to be shared across individuals virtually irrespective of their life experience. 
For example, nobody has unlimited working memory capacity, and every healthy individual has 
a hippocampus. How these constraints arise is visible in a close examination of the brain’s 
architecture – its neuroanatomy. For example, the canonical microcircuit is a repeating motif 
across 6-layer cortex in mammals. Vertebrate brains also have a highly stereotyped modular 
organisation, with different regions (basal ganglia, hippocampus, neocortex, processing 
information in distinct ways and thus providing differing constraints. Neural systems are not 
undifferentiated processing machines, but have structured processing steps, each of which 
transform information in different ways.   
 

 
So what about the parameters? The parameters give a processing architecture its flexibility.  
Given a specific function (or architecture), the way that inputs are converted into outputs will 
differ according to its parameters (compare the coloured lines in the figure about functions 
above). In neural terms, we can think of the parameters as the internal settings that are unique 
to an individual, such as the strengths of individual neural connections (synaptic weights) or 
the configuration of the neuromodulatory gain control systems. In other words, the 
parameters of the information processing system define its content.  These are modifiable by 
experience (unlike, in general, the architecture), for example because synapses are plastic and 
change during learning.  For example, the connections in your cortex and hippocampus may 
be different from mine, because you have had different past experiences to me, and so faced 
with the same inputs, you might behave differently. Another way of putting it: your 
“knowledge” is the parameter setting in your brain. 
 

1.5.   Definitions of intelligence 
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The nature of human intelligence has been a prominent theme in psychology for nearly 100 
years (animal intelligence is also hotly debated, but typically in the sister field of behavioural 
ecology)8. The measurement of intelligence began in the early 20th century, when the US 
government sought a way to select among prospective immigrants. Major themes in the study 
of intelligence emerged over the course of that century, including Spearman’s notion that 
intelligence may be a unitary construct, that can be measured with a single parameter, known 
as 𝑔.  Evidence for this view came from the finding that performance across a range of cognitive 
tasks tends to be highly correlated, i.e. those that perform well on attention tasks also perform 
well on memory tasks.  Of course, it is unclear whether this is because there is really only “one 
intelligence” or it follows from the fact that our tasks tap into a common mixture of factors, 
i.e. there are actually several uncorrelated variables that determine intelligence, but attention 
and memory tasks jointly index several of them at once.  Subsequently Cattell introduced the 
notion of “fluid” and “crystallised” intelligence, the latter roughly pertaining to the ability to 
reason logically in novel settings, and the latter determined by the body of knowledge acquired 
by experience (think: the power of the function and the setting of the parameters, 
respectively). Later, Gardner expanded this definition to consider “multiple intelligences” (he 
dreamt up eight).  In the later 20th century, the development of brain imaging methods led to 
the suggestion that intelligence is associated with executive function and the prefrontal cortex. 
Largely, however, intelligence research has been an exercise in armchair theorising with only 
weak empirical evidence to support the various claims, and it is probably fair to say that after 
100 years we still lack a clear definition of what might constitute “intelligence” for humans, 
other animals, or for machines.  I would argue that this is likely to pose a major roadblock for 
AI research.  How do we know if we have built an AI, if we don’t know what intelligence is? 

                                                      
8 A nice summary in this book: Duncan, J. (2012). How intelligence happens (Yale University Press).  For work 
on animal intelligence, I recommend this book: de Waal, F. (2016). Are we smart enough to know how smart 
animals are? (W. W. Norton & Company). 
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Despite this theoretical vacuum, measuring intelligence is an important application of 
psychology research.  Intelligence tests tend to incorporate our (perhaps unexamined) notion 
of what constitutes fluid intelligence in the 20th century tradition, i.e. it corresponds broadly to 
the ability to reason logically about novel stimuli.  One example is Raven’s Progressive Matrices 
test, in which a series of patterns are shown that follow a progression according to one or more 
unstated variables. The goal is to identify the missing pattern, as in the example above. 
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This notion that reasoning ability = intelligence has its foundations well before the maturity of 
psychology as a discipline. It can be traced back to the rationalist tradition epitomised by 
Descartes: I doubt, and thus I think, and therefore I am. According to this tradition, reason is 
the essence of what defines a human. Throughout the late 19th and early 20th centuries, 
important currents of thought sought to use reasoning as an ontological framework for 
understanding the world.  This began with Boole’s seminal work showing that all logic can be 
reduced to a set of primitive operations (e.g. AND, OR and NOT) and continued with the logical 
positivist movement, which attempted to find a rational basis for all mathematics using tools 
from logic.  In the mid-20th century, early work in computer science built on this tradition, for 
example with Turing’s 1936 proof that a machine that implements primitive logic (a Turing 
machine) can in theory solve any computable problem9. 
 

                                                      
9 Anyone who is really interesting in what Turing’s major contribution to computer science was, including 
really understanding what a Turing Machine is and how it works, is recommended this book: Bernhardt, C. 
(2017). Turing's Vision: The Birth of Computer Science (MIT Press). 
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Brains are large lumps of salt, water and protein, whose cells produce action potentials and 
whose computational is determined by the connections among neurons. How can a brain 
implement a logical operation?  Recall that our computational definition of how a brain works 
can be described by a function.  As we discussed, a function is a computer programme that 
converts inputs into outputs according to a set of rules (constraints). Consider a simple network 
of neurons wired up as in the slide above (blue).  The code on the right defines a function that 
implements an AND gate: if both neurons 𝑥1 AND 𝑥2 are active above threshold, then neuron 
𝑦 will become active. 
 

1.6.  Good Old-Fashioned AI (GOFAI) 
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Taken together, these intuitions motivated the earliest research into artificial intelligence.  It 
was taken as given that intelligence was defined by the power to reason logically about 
symbols, ideally about novel stimuli or situations. So the first AI systems involved the 
manipulation of symbols through logical rules. For example, Terry Winograd (the PhD 
supervisor of Google’s founder, Larry Page) build a system known as SHRDLU that took as 
inputs the position, shape and size of a series of blocks on a table-top world, and a query or 
instruction that defined an interaction with this world (e.g. “pick up the block that is next to 
the blue block”). The system understood a small (~50) but fixed vocabulary of instructions and 
was able to combine them in novel ways to follow instructions, through a dynamic interaction 
with the user that resembled a (limited) conversation. 
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Other, comparable systems similarly engaged in means-end reasoning using natural language 
as inputs.  For example, Alan Newell and Herb Simon – two attendees of the original Dartmouth 
conference – built the “general problem solver”, which was able to reason about any 
(sufficiently small) set of contentions that could be formulated unambiguously as a directed 
graph.  For example, it could solve relatively restricted search problems such as the Tower of 
Hanoi.  The example above is illustrative of the sort of approach that the GPS took, although in 
practice it was unable to solve any real-world problems, which were intractable due to their 
complexity and ambiguity.10 
 

                                                      
10 You probably don’t need to read original papers to know how these systems work. I would suggest looking 
at online resources detailing the history of symbolic AI. 
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Another important advance in 20th century AI research was the development of “semantic 
networks”11 which defined the structural relations among entities as a knowledge graph (see 
above). Like other GOFAI methods, the graph (once specified by the researcher) could be used 
to make new inferences. For example, if the graph specifies that a canary is a bird and birds 
have wings, it is possible to infer that canaries have wings, or even that a new item (e.g. a robin, 
connected to bird) also has wings. 
 

                                                      
11 Rather than reading the original paper I advise looking at the summary in this article,  which is discussed in 
detail in lecture 5: McClelland, J.L., McNaughton, B.L., and O'Reilly, R.C. (1995). Why there are complementary 
learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist 
models of learning and memory. Psychol Rev 102, 419-457. 
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If we fast forward to 1997, we come across one of most important successes in early AI 
research: the development of Deep Blue, which beat reigning world champion Gary Kasparov 
at chess.  It had long been thought that the development of a machine that could beat a human 
grandmaster at chess would be the moment at which AI was “solved” (wrong. Now, you can 
see why defining intelligence is so critical to the project of AI research).  Kasparov didn’t like 
being beaten and claimed that IBM had “cheated”.  
 

 
 
But IBM hadn’t cheated. Rather, they had built a (then) powerful supercomputer, that was able 
to search through future board states at a (then) astonishingly fast rate – 200 million moves 
per second. This powerful computational tool allowed Deep Blue to estimate the potential 
future value of each different move it could make, using an efficient search method known as 
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“alpha-beta search”. Deep Blue didn’t learn anything about chess as it played, and it didn’t find 
“patterns” in the board or use its intuition. It just searched for the best move by “brute force”.   
 

1.7.  Critiques of the symbolic approach to AI 
 

 
That’s not cheating, but in a way, it’s not all that smart either. In fact, what all of these GOFAI 
methods have in common is that they were tailored for a particular domain (a world of blocks, 
or the game of chess) and would fail catastrophically in any other problem they were faced 
with. Although the methods developed (e.g. alpha-beta search) have wider application, the AI 
itself was limited to solving one class of problem. That’s very different to biological intelligence 
– whose hallmark is a flexible ability to solve whatever problem the agent comes across.  
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So is that “intelligent”? At this point, a set of definitions might be useful.  Deep Blue and other 
GOFAI systems were intelligent, but their intelligence is narrow, that is, it is directed at solving 
a single problem.  By contrast, today AI researchers are motivated by the dream of building a 
system with general intelligence, that is, the ability to perform well at any task. What does it 
mean to perform “well”?  Of course, this is hard to define. But most researchers would be 
satisfied if they were able to build a system that could perform any new task at least as well as 
a human.  This is the standard definition of “artificial general intelligence” (AGI), or as it is 
termed above “human-level machine intelligence” (HLMI). 
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However, there is another, potentially more serious problem with these symbolic processing 
systems, and it’s known as the symbol grounding problem. The problem is somewhat 
philosophical in nature and has its most eloquent exponent in the form of philosopher John 
Searle12. The problem is that there is nothing linking the symbols in the machine’s memory to 
anything real in the external world. Take, for example, a semantic network. A node in the graph 
might correspond to “wings”, but it only does so because the researcher has specified this. The 
network doesn’t actually know anything about the real world.  Why is this a problem? Well, 
John Searle offered a thought experiment that he called the “Chinese Room”. Pieces of paper 
with writing in Chinese characters are passed into the room through a slit. Searle (who does 
not speak Chinese) sits in the room with a large book that specifies exhaustively the rules for 
mapping from the input Chinese characters to an appropriate response, also in Chinese. Searle 
copies the appropriate output onto the piece of paper and passes it back through the slot.  
From the perspective of someone outside of the room, the person in the room can “speak 
Chinese”. But Searle doesn’t understand Chinese at all. He’s just transforming symbols 
according to a set of rules.  The problem is akin to trying to learn a new language by perusing 
a dictionary written entirely in that language. You might exhaustively learn a mapping from 
words to definitions, but you won’t know at all what they mean. Searle argued, thus, that 
symbolic processing systems don’t really “understand” anything at all. 
 
 

 
One of the reasons that symbolic systems suffer from the symbol grounding problem is that 
they don’t acquire any new knowledge themselves from the world.  In fact, according to our 
definition above, they either don’t have any “parameters” at all, or the parameters are 
specified by the researcher.  In other words, any knowledge that these systems have is 
downloaded from the researcher’s brain and built into the system, rather than being acquired 
from interactions with the environment. 

                                                      
12 https://arxiv.org/html/cs/9906002 
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Contemporary machine learning systems, by contrast, acquire knowledge from the world.  The 
parameters 𝜃 are typically initialised at random (like an infant, that begins by generating quasi-
random actions) and gradually refined according to an optimisation principle (learning).  In the 
next lecture, we will discuss reinforcement learning, arguably the most basic mechanism by 
which biological systems learn to select actions. 
 

  

Knowledge and the brain
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In machine learning systems, the parameters are learned 
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optimization principle
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2. Reinforcement Learning 
 

2.1.  Why do we have a brain? 
 

 
Why do we have a brain? If you ask most people (i.e. not psychologists or neuroscientists) this 
question (and I have) they mostly reply: “for thinking”.  Of course, they are right. But can we 
come up with a more precise answer to this question? In fact, there is some debate over this 
issue.  But I’m going to outline the dominant view13. 
 
To consider why we have a brain, it’s useful to think about which organisms have brains, and 
which don’t.  It might be tempting to assume that complex organisms have brains and simple 
ones don’t. Clearly, however, this is not true.  Trees are immensely complex organisms, but 
they don’t have brains.  An alternative suggestion might be that being an animal is a sufficient 
condition for having a brain. It’s not. Sea sponges and jellyfish, for example, are animals but 
they don’t have brains.  If you look at the life forms shown in the figure above, only the ones 
in green have brains.  What do they have in common? 
 
The answer is that you typically have a brain when you need to flexibly select actions in 
response to external stimuli in order to survive. Jellyfish have a nervous system (they move 
through the sea) but they do so via a series of automatic reflexes which are fully determined 
by their sensory inputs. In the terms introduced in lecture 1, their brain is a function that has 
fixed parameters that cannot be modified by experience.  Rodents, monkeys and humans 
however live in dynamic environments that constantly require them to decide among courses 

                                                      
13 For an alternative, this book about the octopus brain is great (but skip the bits about consciousness) 
Godfrey-Smith, P. (2016). Other Minds: The Octopus, The Sea, and the Deep Origins of Consciousness (Farrar, 
Straus and Giroux). 
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of action: which tunnel to run down, which branch to jump to, and which undergraduate 
degree course to follow.  Brains are information processing systems that evolved to select 
actions in a flexible manner. 
 

 
Just to really emphasise the importance of the need to select actions flexibly, action selection 
itself is not the province of organisms with brains. Consider this simple creature, E Coli (a 
bacterium that can cause nasty illness in humans).  It navigates through the environment by 
following a chemical gradient, selecting “running” and “tumbling” movements in order to 
follow its desired trajectory.  However, it doesn’t have a brain. It can’t – it’s just a single-celled 
organism. 
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In this lecture, we’re going to consider the function of two brain regions that are critical for 
action selection.  The phylogenetically more ancient of these structures, the basal ganglia (BG), 
is among the most primitive brain structures, having retained the same morphology for at least 
400 million years, and being present in our genetically most distant animal relatives, the 
lamprey eel and hagfish (slimy things that live at the bottom of seas/rivers)14. The BG receives 
inputs from the midbrain, which contains centres for the most basic functions (e.g. control of 
heartbeat, breathing, and gustation). The overlying dorsal anterior cingulate cortex (dACC) is 
an infragranular cortical area that can be thought of as an outpost of the basal ganglia that 
evolved subsequently (in mammals) just across the callossum from the BG. It performs a 
related but slightly more complex function, as we shall see below. In rodents, the dACC is a 
very prominent part of the frontal lobes; in primates somewhat less so; and in humans, it is 
rather dwarfed by the overlying granular (6-layer) cortex.  
 

2.2.   Classical and operant conditioning. 
 
 

 
 
Classical and operant conditioning are the most basic forms of learning observed in biological 
brains.  Classical conditioning (also known as Pavlovian conditioning after its discoverer, Ivan 
Pavlov) involves the learning of associations between sensory events.  In the classic example, 
an unconditioned stimulus (US) such as food which naturally elicits an unconditioned response 
(UR; such as salivation) is paired by consistent temporal association with a conditioned 
stimulus (such a bell).  Following learning, the bell will come to elicit the UR.   
 

                                                      
14 Lots of interesting stuff about brain evolution in this book: Lynch, G. (2009). Big Brain: The Origins and 
Future of Human Intelligence (Palgrave Macmillan). 
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In operant conditioning (also known as instrumental conditioning) an animal learns that a 
particular action (conditioned response) such as a lever press elicits a stimulus, such as food. 
The law of effect, a term coined by Edward Thorndike, describes how the animal will come to 
produce the response more frequently when it elicits a (positive) stimulus, and less frequently 
when it elicits a negative stimulus (such as shock). 
 
 

 
 
Classic examples of operant conditioning include a cat who learned to repeat the actions that 
allowed it to escape from a box, and a pigeon being “shaped” by BF Skinner, as shown in the 
video. 
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In the mid-20th century psychologists formulated a quantitative theory for understanding 
conditioning, known as the Rescorla-Wagner rule. It was originally proposed to explain classical 
conditioning but applies equally to the operant case15.  The theory proposed that value of an 
action 𝐴 at time 𝑡, denoted 𝑉𝑡

𝐴 was updated as a function of the discrepancy between the 
reward value it actually elicits 𝑅 and a current expectation about the reward it will elicit, which 
is simply the value estimate from the previous trial 𝑉𝑡−1

𝐴 .  This discrepancy, or prediction error, 
sometimes denoted 𝛿, is scaled by a term 𝛼, known as the learning rate.  The learning rate 
critically determines the extent to which the current update is influenced by the reward 
history.  When the learning rate is low, the value estimate updates slowly, as a recency-
weighted average of many outcomes associated with that action.  When the learning rate is 
set to 1, the value of the action is simply set to 𝑅 (in other words you think the action is good 
whenever it elicits a reward, and bad whenever it doesn’t, irrespective of what happened in 
the past).  This model is also sometimes known as a “delta-rule” model. 
 

                                                      
15 The scholarpedia page on RW theory was written by Robert Rescorla himself. The notation he uses is slightly 
different to mine. 
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To illustrate, here I plot the value estimate and prediction error for a simulated case in which 
a stimulus furnishes a reward of -1 on each of the first 100 trials, and +1 on the subsequent 
100 trials.  It is assumed that the model acts on every trial. The model initially has no knowledge 

of the value of taking an action and so 𝑉0
𝐴 is initialised to zero.  The value estimate converges 

to its true value (-1) after some tens of trials (here, the learning rate is set to 0.1; the rate of 
convergence would be faster if it were higher).  Once it has reached -1, it does not deviate (at 
first) because the prediction and the reward match perfectly and so the prediction error is 
zero, and no further updating takes place.  However, on trial 100, the reward unexpectedly 
switches to +1. This elicits a large, positive prediction error (spike in green trace) which 
gradually dies away as the model learns the new value of acting. 
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Let us compare to some empirical data16. These data were recorded from dopamine cells in a 
midbrain structure known as the ventral tegmental area (VTA) of the macaque monkey during 
a task that involved discrimination of two abstract images.  First the monkey discriminates 
among 2 images with which it is highly familiar.  Although it is rewarded on correct trials, the 
cells do not fire because there is no prediction error – the reward is fully expected.  
Subsequently, 2 new (previously unseen) images are introduced. The monkey at first doesn’t 
know what to do.  Correct responses elicit an unexpected reward, and thus a positive 
prediction error, and so the cells fire strongly when the reward is administered. As training 
proceeds, the monkey becomes more familiar with the stimuli and learns the correct response. 
Over time, thus, the neural signal elicited by the reward dies away, exactly in the manner 
predicted by the delta rule model in the previous slide.  This study forms part of a large body 
of evidence, dating from the 1990s, which shows that VTA dopamine cells behave as if they 
were signalling reward prediction errors as computed by models of this class. 
 
 

                                                      
16 Hollerman, J.R., and Schultz, W. (1998). Dopamine neurons report an error in the temporal prediction of 
reward during learning. Nat Neurosci 1, 304-309. 
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Cells in the striatum (part of the BG) receive inputs from VTA dopamine cells.  Further evidence 
suggests that some neurons within the striatum encode the value of particular courses of 
action. In this classic study by Samejima and colleagues17, the monkey performs an instructed 
movement (left vs. right saccade) to a target to obtain a small or large reward (different volume 
of liquid).  The experimenters varied the probability of reward for a left vs. right action. When 
the probability of a large reward conditioned on a rightwards response was 0.9, the cell in the 
lower panel responded vigorously, but it responded only weakly when that probability was 0.1 
(right panel). However, when it was the value of responding left that was manipulated instead, 
the cell showed no difference in response.  In other words, this cell is tracking the value of 

making a saccade to the right 𝑉𝑡
𝑟𝑖𝑔ℎ𝑡

. 

                                                      
17 Samejima, K., Ueda, Y., Doya, K., and Kimura, M. (2005). Representation of action-specific reward values in 
the striatum. Science 310, 1337-1340. 
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So how is operant conditioning implemented at a neural level?  The striatum is a critical brain 
structure for action selection. In human patients, lesions of the striatum lead to “akinetic 
mutism”, a disorder in which patients become acutely apathetic and fail to select any actions 
at all, despite an apparent ability to do so. In addition to a dopaminergic input from the VTA 
(and substantia nigra), it receives inputs from, and projects back to, the cortex in partially-
parallel loops that link sensory, motor and limbic zones.  Consider an example striatal neuron 
that receives afferent inputs from a sensory region (coding, for example, the presence of a 
peanut) and projects back to the motor cortex, terminating on a motor neuron that codes (for 
example) for a reaching action. If the monkey sees a peanut and initiates a reaching movement, 
the connection between the input (sensory) neuron and striatal neuron will be strengthened 
by Hebbian learning (much more on this later), under the principle that neurons that are co-
activated become connected more strongly.  However, the critical algorithmic motif is that this 
update connection strength is modulated by (multiplied by) the level of dopamine that the cell 
receives from the reward system (e.g. VTA).  Thus, if reaching for (and consuming) the peanut 

elicits a reward, there will be an update to 𝑉𝑡
𝑝𝑒𝑎𝑛𝑢𝑡  but otherwise there will not. This has been 

demonstated by measuring levels of synaptic potentiation following intra-cranial self-
stimulation, a method that allows animals to press a lever to directly activate their own reward 
system (in this case the substantia nigra)18. 
 

2.3.  Reinforcement learning and the Bellman equation 
 
 

                                                      
18 Reynolds, J.N., Hyland, B.I., and Wickens, J.R. (2001). A cellular mechanism of reward-related learning. 
Nature 413, 67-70.  For a more detailed view: Wickens, J. (1993). A theory of the striatum (New York: 
Pergamon Press). 
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This well-established biological framework for understanding how actions are selected has had 
a potent influence on the fields of AI and machine learning.  The subdomain of reinforcement 
learning, which describes computational methods for choosing actions on the basis of the 
reward history, has become one of the dominant approaches with AI research. The currency 
of the RL framework is observations, actions and rewards.  Observations are sensory signals 
emitted from the environment. The agent processes the sensory input, and selects and action 
according to a value function, which specifies the value of actions conditioned on the 
observation. The action leads to an outcome. The outcome is used to update the value 
function.19 
 
 
 

                                                      
19 The definitive book on RL by Sutton & Barto was written in 1998 and updated in 2018. It is very long and you 
should not read it all! But various chapters may be useful. It can be downloaded here.  For everything else that 
follows in RL, I strongly recommend chapter 4 of the Butz & Kutter book, which has really clear explanations. 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=2ahUKEwjBg_6LhafdAhWBxYUKHT6cAegQFjAAegQIDBAC&url=http%3A%2F%2Fincompleteideas.net%2Fbook%2Fbookdraft2017nov5.pdf&usg=AOvVaw00kFmqVbFSdkU3PTkJMJrO
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The widest application of RL methods is to a class of problem known as a Markov decision 
process (MDP).  An MDP is an environment which can be defined in terms of a set of states 𝑆 
and their transitions 𝑃; a space of possible actions 𝐴; and the rewards that are likely to be 
obtained in each state 𝑅.  An MDP obeys the Markov property, i.e. that future states depend 
only on the immediately past state. For example, in the grid world illustrated above, the state 
occupied by the agent (green) on the next step is fully determined by its current state and the 
action it takes – there is no need to consider past states (i.e. where it was before its current 
state) to predict its position. 
 
The grid world problem illustrated is typical of the sort addressed in the domain of 
reinforcement learning. The agent occupies a start location which is distant from the goal. It 
has to learn to move directly to the goal to harvest a reward.  How can it do that?  
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One advantage of working with MDPs is that it is possible to unambiguously specify the optimal 
policy for behaviour given 𝑆, 𝑃, 𝐴 and 𝑅, thanks to work by the mid-20th century mathematician 
Richard Bellman. The Bellman equation is given above. The equation is used to compute how 
valuable you should think each state is, if you are an agent that is going to maximise reward in 
that environment. For example, in the grid world on the previous slide, an agent should think 
that it is better to occupy states close to the reward than far away.  The Bellman equation looks 
complicated, but it’s really very simple. It states that the optimal value of any given state 𝑉∗(𝑠) 
[i.e. the value of state 𝑠 that you should compute in order to maximise reward in the 
environment] is obtained by maximising a quantity that is the sum of the reward obtained on 
the next timestep 𝑅𝑡+1 and the discounted future reward that you can expect to obtain from 
that state. The discount factor ensures that expected rewards that might be obtained far in 
the future (e.g. £100 in a year’s time) may be less subjectively valuable than those that are 
close to being obtained (e.g. £100 tomorrow). 
 
The Bellman equation is simple to state, but it can be tricky to compute on the fly. That is 
because it involves recursion.  To compute 𝑉∗(𝑠𝑡+1) you need to estimate the likely value of 
𝑉∗(𝑠𝑡+2), and to know that, you need to estimate the likely value of 𝑉∗(𝑠𝑡+3), etc. This can be 
computed using a set of computational tools known as dynamic programming, or alternatively 
can be approximated by sampling sequentially from possible future eventualities up to some 
reasonable time horizon.  Luckily, however, a class of reinforcement learning algorithm that is 
closely related to the Rescorla-Wagner model, known as temporal difference (TD) learning, 
allows the optimal value function to be approximated by learning from reinforcement.  This is 
the basis of contemporary reinforcement learning methods in AI/ML. 
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Let’s go through an example to make sure that you understand how the Bellman equation 
works. The figure above illustrates an example lunch menu at your university canteen for the 
coming week.  It’s Monday. What’s the (optimal) value of the current state, 𝑉∗(𝑚𝑜𝑛)?  Lunch 
today is pizza, which you quite like (value = 0.7).  But tomorrow it’s salad (boring! value only 
0.3).  You are really looking forward to friday, however, because it’s fish and chips!  The Bellman 
equation states that 𝑉∗(𝑚𝑜𝑛) = 𝑅(𝑚𝑜𝑛) + 𝜆 ∙ 𝑉(𝑡𝑢𝑒𝑠).  So that’s 0.7 + 𝛾 ∙ 𝑉(𝑡𝑢𝑒𝑠).  But 
what is 𝑉(𝑡𝑢𝑒𝑠)? That in turn depends on what is for lunch on wednesday, etc. The full 
equation for computing 𝑉∗(𝑚𝑜𝑛) is given on the slide. Note that because the discount factor 
0 < 𝜆 < 1 is applied on every step, it gradually shrinks, so that states far in the future are more 
heavily discounted. 
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Here’s another example that makes the link to our grid world problem more explicit.  It’s 
monday again, but the week is looking boring (canteen is closed). Except…it’s your birthday on 
friday!  So what’s 𝑉∗(𝑚𝑜𝑛)?  Well, you aren’t getting any rewards on monday, but intuitively, 
it’s not long to your birthday, so it’s value probably shouldn’t be zero. But it shouldn’t be as 
good as (say) thursday.  The equation shows why. 
 

2.4.  Temporal difference learning 
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So how can we use TD learning to compute the optimal value function?  To provide a more 
general solution, we’re actually not going to compute the optimal value function 𝑉∗ but a 
related function, known as the Q-function, which specifies not just the value of states but the 
value of each action in each state. So in the example involving the monkey and peanut above, 
we talked about learning 𝑉𝑝𝑒𝑎𝑛𝑢𝑡  but actually here, we’re going to learn 𝑄𝑝𝑒𝑎𝑛𝑢𝑡,𝑟𝑒𝑎𝑐ℎ .  
Following the notation above, we’re going to write the value of the current state and action 
under a given policy 𝜋 (this is just the name given to the policy we are following, which in turn 
is determined by our Q-function) as 𝑄𝜋(𝑠𝑡 , 𝑎𝑡) where 𝑡 is the current timestep.  This is going 
to be updated by the prediction error 𝛿 multiplied by the learning rate 𝛼.  Crucially, in TD 
learning, the prediction error is given by 𝑟𝑡+1 + 𝛾 ∙ 𝑄𝜋(𝑠𝑡+1, 𝑎𝑡+1) − 𝑄𝜋(𝑠𝑡 , 𝑎𝑡).  
 
So what does this actually mean?  On each timestep, you have an estimate of the value of each 
course of action (initially, this is randomised, or set to zero).  That’s 𝑄𝜋(𝑠𝑡 , 𝑎𝑡).  Now, take an 
action and add up the reward you are going to receive, and the value of the new state you are 
going to occupy.  That’s known as your “target”. Subtract the estimate of the current state 
from your target, and that’s your prediction error.  Intuitively, you are comparing your current 
estimate of the value of that state to a new observed value estimate, i.e. expected to observed 
value estimate – exactly as you should. 
 
Effectively, what TD learning is doing is gradually approximating the optimal value function for 
that environment under the Bellman Equation.  The agent doesn’t “think ahead”, e.g. mentally 
simulate the trajectory from monday to Friday in our canteen example. Rather, the agent acts, 
and when a reward is encountered, it is “backed up” to the previous step. So, a reward 
obtained on Friday is used to adjust the value of Thursday, and then later, to update the value 
of Wednesday, and so on. 
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This should help us understand the well-known result that during classical conditioning, VTA 
dopamine neurons initially fire in response to the reward (which elicits a large prediction 
error), but this effect dies away over time. Critically, however the reward is then “backed up” 
to a stimulus that predicts the reward, earlier in time.  Here, this is beautifully shown in 
recordings of dopamine concentration in the striatum using voltammetry20.  Early in the block, 
dopamine is increased by onset of the US (i.e. the reward).  However, over the course of 
training, the dopamine response shifts backwards in time, to the CS (e.g. a light that predicts 
the subsequent reward).  Single-cell recordings from dopamine neurons in the VTA disclose a 
similar phenomenon. 
 
 
 
 

                                                      
20 Flagel, S.B., Clark, J.J., Robinson, T.E., Mayo, L., Czuj, A., Willuhn, I., Akers, C.A., Clinton, S.M., Phillips, P.E., 
and Akil, H. (2011). A selective role for dopamine in stimulus-reward learning. Nature 469, 53-57. 



November 2018 51 

 
 
Another illustration is given in this study by Fiorillo and colleagues21, who varied the predictive 
association between a cue and a reward. After training, when the cue typically signalled the 
likely absence of reward, a reward that did occur was very unexpected and elicited a large 
positive prediction error. When the cue was fully predictive of reward, the reward itself elicited 
no increase in firing rate, but instead the cue drove the dopamine neurons to fire vigorously. 
 
 

                                                      
21 Fiorillo, C.D., Tobler, P.N., and Schultz, W. (2003). Discrete coding of reward probability and uncertainty by 
dopamine neurons. Science 299, 1898-1902. 
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The equations for TD learning we have discussed thus far describes how the value function 
should be updated. They do not, however, specify how the agent should act. Recall that the Q 
function encodes the value of each possible action in each possible state. So, in our grid world, 
the actions might be up, down, left or right.  One obvious solution might be to always choose 
the best action.  But this is poses a problem: imagine that the agent (green) occupies the 
position as shown, and for some random reason, the value of moving “up” is highest. The agent 
will be stuck in its current position, and because it’s stuck, it can’t learn anything new and thus 
remains stuck.  More generally, we need a policy for action selection that ensures that some 
of the time, new courses of action (which may potentially be better) are explored. This is the 
well-known tradeoff between exploration (trying out a new course of action) and expoitation 
(choosing the option that you current think is best).  We all experience this dilemma when 
visiting a familiar restaurant – the pizza was good last time, but what if the spaghetti is even 
better? You won’t know unless you try.   
 
So one solution to this problem is known as epsilon-greedy action selection.  This simply says: 
on each timestep, behave randomly with probability epsilon (typically, small) otherwise choose 
the best option.  This is quite a sensible policy.  However, choosing randomly might be a bad 
idea in some circumstances, for example if you are next to a cliff. 
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A more biologically plausible action selection policy is called a softmax. The equation is given 
on the figure above, but broadly, it means: choose actions roughly in proportion to how good 
they are. So if action A is twice as valuable as action B, choose action A approximately twice as 
often on average.  Implementing this sort of policy gives rise to the sorts of behaviour observed 
in biological systems, where choice functions tend to be a approximately sigmoidal, which is 
the form of the cumulative response probability distribution given by the softmax rule.  These 
considerations help us understand why biological systems make choices that are intrinsically 
variable, but broadly sensible. 
 

2.5.  Q-learning, eligibility and actor-critic methods 
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TD learning is what is known as an “on policy” method. This means that the state estimation is 
carried out under the assumption that you are following the policy 𝜋 that is given by your 
current value function.  Of course, you might want to estimate the value of the next state under 
any policy that you could potentially follow. The best way to do this would be to estimate the 
value of the next state as 𝑄𝑚𝑎𝑥(𝑠𝑡+1, 𝑎𝑡+1), i.e. as the maximum value over all possible actions.  
This is known as “Q learning”. 
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The videos in the figure above show the behaviour of an agent (green) trained to reach a goal 
(yellow) in a grid world. The three figures show its behaviour early, middle and late in training. 
As you can see, early on the agent behaves approximately randomly, whereas later it makes a 
beeline directly for the goal, because it has learned to approximate the optimal value function. 
 

 
 
Having trained our agent, one trick we can do is to examine its value function. Here, I’ve plotted 
the Q-values for the 4 actions: up, down, left right in each state. As you can see, when it’s 
immediately to the left of the goal (now shown as a red dot) the value of right is high but left 
is low, and vice versa. The value of “up” is high in states that lead to those adjacent to the goal. 
Because the goal is at the top of the environment, there is rarely any benefit to going “down”, 
and so Q values for down are all near to zero. 
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One additional trick that we can do to speed up learning is to add an eligibility trace. An 
eligibility trace keeps track of how recently a state has been visited, by updating an eligibility 
function 𝐸(𝑠) each time it is occupied, and then gradually decaying the eligibility over time. At 
the time of update, 𝛿 is additionally multiplied by 𝐸, ensuring that values are not just backed 
up to the previous state, but to all states as a function of their recent visitation history. 
 
 
 

 
 
As you can see from the plot above, the addition of an eligibility trace accelerates learning (red) 
relative to the case without.  At the neural level, it is not entirely clear what might constitute 
an eligibility trace, but there is evidence that synapses become “tagged” when stimulated, 
triggering a latent mechanism that may allow their later strengthening when a reward is 
received22. 
 
 
 

                                                      
22 https://arxiv.org/abs/1707.04192 
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Finally, it is worth drawing your attention to a slightly different (and very successful) 
reinforcement learning approach, known as the actor-critic model.  In actor-critic methods, 
one part of the system directly optimises the policy (with some parameters 𝜃), i.e. what do; 
another learns the value of specific states. This seems to accord well with the neural separation 
between learning the value of stimuli (e.g. via classical conditioning) and the value of actions 
conditioned on a state (e.g. in instrumental conditioning). 
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Indeed, despite the shared computational principles, there is good evidence that classical and 
instrumental conditioning rely on different neural structures.  For example, in this study by 
O’Doherty and colleagues23, they measured neural prediction errors (in BOLD signals) in a 
design that allowed them to dissociate Pavlovian and operant learning. Operant conditioning 
elicited prediction errors in BOLD in both the dorsal and ventral striatum (nucleus accumbens), 
whereas those observed in Pavlovian conditioning were limited to the accumbens. This is 
consistent with the greater involvement of dorsal (rather than ventral) striatum in motor 
control.  Note that the correlation between neural activity and prediction errors in the striatum 
seems like it contradicts evidence from single-cell recordings which has pointed to the 
midbrain (e.g. VTA) as the origin of dopamine prediction error signals.  However, it is likely that 
BOLD signals measure principally afferent (input) activity to a region, which may explain the 
discrepancy between results from the two classes of recording method. 
 
 

 
 
So now we are in a position to put everything together. Prediction error signals are computed 
in dopamine neurons of the midbrain, which send signals to the striatum. These gate the 
stimulus-stimulus (ventral striatum; V-function) and stimulus-response (dorsal and ventral 
striatum; Q-function) links formed during ongoing experience and behaviour, that depend on 
inputs to the striatum from the neocortex.  The outputs of these systems are routed via the 
globus pallidus and striatum to the cortex, where they are converted into motor behaviour.  
Under this scheme, there is a nice correspondence between the reinforcement learning 
methods (which we know approximate optimal value learning, and work in practice) and the 

                                                      
23 O'Doherty, J.P., Dayan, P., Friston, K., Critchley, H., and Dolan, R.J. (2003). Temporal difference models and 
reward-related learning in the human brain. Neuron 38, 329-337. 
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functional neuroanatomy of the cortico-striato-cortical loops that are ubiquitously observed in 
the brains of both simple and complex animals. 
 

 
However, there remain a number of limitations with the RL framework. Firstly, model-free RL 
methods (as discussed thus far) require that an agent learn a function that specifies the value 
of each action in each state. But what is a “state”? This is easy to define in a simple MDP like a 
grid world, but much harder to specify in the real world.  Secondly, we know that model-free 
RL perform poorly large or complex in environments with sparse rewards. As we will see later, 
temporal abstraction can help, but how to find the right abstractions remains an unsolved 
problem.  Finally, if we think about the richness of human action selection, it extends way 
beyond what is described here. For example, humans can simulate imagined or counterfactual 
goals, and select actions that lead to them. You couldn’t use RL to decide what career to follow 
or which house to buy! Clearly, there are other methods that are required to build truly 
intelligent action selection.  Of which more in subsequent lectures. 
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3.Deep learning in the primate ventral stream 
 

3.1. Parametric models for object recognition 
 
 
 

 
The truly astonishing thing about the mammalian visual system is its capacity to engage in 
accurate object recognition despite the infinite variety in sensory stimulation.  You have 
probably never seen the cat or dog shown above, but you have no hesitation in identifying 
them.  Every single image that is incident on the retina throughout your lifetime is unique, but 
visual recognition (at least under photopic conditions) seems utterly effortless.  How does the 
brain do that? 
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In the previous lecture, we discussed RL models, that learned a value function encoding the 
value of actions in given states.  But the infinite variety of sensory experience means that there 
are no uniquely specified “states” available to most animals, at least not that resemble the 
clear [x,y] locations in the grid world examples we used previously. 
 
To understand how this challenge can be met, it’s useful to draw a distinction between 
parametric and nonparametric models. Many standard RL models, such as the TD and Q-
learning examples we discussed, are nonparametric models.  This means that they encode 
values in something like a tabular format. One corollary of this is that as the number of 
potential inputs (states) or outputs (actions) grows, so does the size of the network (i.e. table).  
In a world in which each state is unique, this will not suffice – because we would need a new 
entry in the table for every new input that impinges on our sensory systems! 
 
One alternative is to use a parametric model. In parametric models, the number of inputs and 
outputs is fixed.  The model learns a set of parameters that map inputs onto outputs.  Similar 
states will be passed through the network in comparable ways and produce similar outputs. In 
other words, the model will be able to generalise existing knowledge to new exemplars. Thus, 
you might respond to any new cat as you have responded to the cats you have previously met.  
Parametric models can in principle handle any number of distinct inputs, although in practice 
the number of distinctions it will be able to make among them is going to be limited by the 
number of parameters (i.e. the network size). In this lecture, we will discuss feedforward neural 
networks, which are a popular type of parametric model (or function approximator) that are 
often used for object recognition.  Later in the course, we will see how parametric models can 
be combined with the RL framework to produce powerful RL agents that can behave 
intelligently in complex, open-ended environments such as video games. 
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Let us begin by taking a close look at sensory systems. Sensory systems are most extensively 
evolved in mammals, and in humans and other primates, vision is by far the dominant modality.  
In this lecture, thus, we will focus on vision and use the terms “sensory” and “visual” in an 
interchangeable fashion (with apologies to colleagues who work on other fascinating sensory 
modalities). 
 
Before diving into the details, it is probably worth saying a word or two about what sensory 
systems are for. Sensory systems, such as the primate ventral visual stream, allow inputs to be 
pre-processed so that they are in a state more suitable for cognition and action selection.  In 
the images shown on the previous slide, from the point of view of the visual system the sensory 
inputs are not “cat” and “dog” but rather are complex, high dimensional data structures that 
encode the luminance and wavelength of each part of the image that is incident on a 
photoreceptor.  The job of sensory systems is to reduce this complex data structure to a neural 
code that is readily interpretable by other systems that may wish to select appropriate actions 
to it – for example, stroking the cat or taking the dog for a walk. Although you may effortlessly 
identify a cat or a dog in the image, it is worth pointing out that this is not because object 
recognition is a trivially simple computational problem. Quite the converse. It’s easy because 
you are a primate, and primates – after millions of years of evolution – are very good at it.  
 
It’s probably worth pointing out that some other animals get by quite well with much more 
primitive image preprocessing systems. For example, frogs have “bug detector” cells on their 
retina that directly code the presence of a small dot that enters the receptive field and stops 
or moves intermittently. Activation of these cells is sufficient to provoke a reflex tongue 
protrusion towards the appropriate spatial location.  There’s no preprocessing of the image – 
retinal stimulation leads directly to a (predatory) action. 
 
In the primate, the visual system consists of multiple hierarchically organised regions.  During 
visual processing, information is passed forward in an initial sweep lasting ~100ms, from the 
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retina to the earliest stages (e.g. V1) and from there through the ventral stream to a plethora 
of extrastriate regions, terminating in anterior temporal lobe regions that lie close to the 
hippocampus and surrounding medial temporal lobe structures. During this feedforward 
processing, the dimensionality of the signal is reduced from ~37M (in V1) to ~10M (in AIT), 
although the effective compression that occurs between these stages (i.e. after taking neural 
correlations into account) may be far greater.24 
 
 

 
 
Along the ventral stream, we know that receptive fields grow in both space and time (here, we 
shall focus on the expansion in space, leaving time for the next lecture) and that the complexity 
of RF response properties grows. Thus, a cartoon description of the representational 
properties of the primate ventral stream might state that early visual neurons code for simple 
visual features, such as orientation and spatial frequency, whereas later visual neurons code 
for complex objects, faces and locations, including for example putative neurons coding for 
“cat”, “dog” “your grandmother” in area IT/TEO. 
 
Neuroscientists have long sought a unified theory that can account for the diverse and complex 
(but seemingly highly organised) coding properties of visual neurons. However, in order to 
formulate such a theory, one has to define exactly what those coding properties are in the first 
place.  This presents a major challenge in itself. 
 
 
 

                                                      
24 DiCarlo, J.J., Zoccolan, D., and Rust, N.C. (2012). How does the brain solve visual object recognition? Ibid. 73, 
415-434.  See also Kriegeskorte, N. (2015). Deep Neural Networks: A New Framework for Modeling Biological 
Vision and Brain Information Processing. Annu Rev Vis Sci 1, 417-446. And Yamins, D.L., and DiCarlo, J.J. (2016). 
Using goal-driven deep learning models to understand sensory cortex. Nat Neurosci 19, 356-365. 
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This slide highlights an early finding suggestive of the fact that there may be very “sparse” 
representations in the anterior temporal lobe, i.e. cells that respond to a very specific object 
or, in this case, individual. The researchers presented macaque monkeys with images of human 
faces, and the slide depicts a neuron that responded to a single person and barely at all to 
everyone else. Lo, a grandmother neuron! However, despite the pleasing story that this tells 
(and the surprising vindication of a theory that began as a joke in the 1960s), we now know 
that most coding in the anterior ventral stream is quite distributed, i.e. many neurons each 
code for many features.  Estimating the true sparsity of coding in any recording region is of 
course challenging, given the (very) limited sample of neurons that can be recorded out of the 
many millions that may be present.25 
 

                                                      
25 Primary paper is this one. Young, M.P., and Yamane, S. (1992). Sparse population coding of faces in the 
inferotemporal cortex. Science 256, 1327-1331.  See also this review by Bowers Bowers, J.S. (2009). On the 
biological plausibility of grandmother cells: implications for neural network theories in psychology and 
neuroscience. Psychol Rev 116, 220-251.  See also this article from the Quiroga (the Jennifer Anniston neuron 
guy): Quiroga, R.Q., Kreiman, G., Koch, C., and Fried, I. (2008). Sparse but not 'grandmother-cell' coding in the 
medial temporal lobe. Trends Cogn Sci 12, 87-91. 
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That same problem – the limited sample of neurons that can be recorded in any one study – 
makes identifying the specific coding properties of visual neurons (or, any neuron) very 
complicated. However, the authors of this study identified a very clever way of visualising the 
neural code in IT26. They presented monkeys with random 3D objects that were generated with 
a combinatorial description language, that allowed them to generate a virtually limitless set of 
stimuli. Whilst recording from each neuron, they iterated the stimulus parameters through 
multiple generations in a way that was optimised to maximise the response of the neuron. For 
example, if a cell responded to stimulus A, they presented more stimuli that resembled A; if it 
then responded most to A_1, they presented yet more stimuli that resembled A_1.  The 
continued this process until they had identified a family of stimuli to which the cell responded 
extremely well. Two examples are shown on the slide above.  The cells responded to 3D objects 
with a well-defined structural form but were invariant to rotations and translations of those 
objects. 
 

3.2.  A critique of pure representationalism 
 

                                                      
26 Yamane, Y., Carlson, E.T., Bowman, K.C., Wang, Z., and Connor, C.E. (2008). A neural code for three-
dimensional object shape in macaque inferotemporal cortex. Nat Neurosci 11, 1352-1360. 
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At this point it may be useful to take a small digression and discuss the dominant mode of 
understanding of the sensory systems of biological brains, and where its limits lie. A long 
tradition in psychology and neuroscience is based on representationalism, that is, the 
philosophy that a brain can be understood by exhaustively identifying the coding properties of 
its constituent neurons or brain areas. This has not been a fruitless endeavour. Much of our 
foundational understanding of how neural systems function comes from recording 
experiments that have defined their coding properties, such as Hubel and Wiesel’s seminal 
experiments in cat V1.  However, it is sometimes forgotten that identifying representational 
properties is only useful as a means of pinpointing the computational principles by which the 
system works – of specifying how stimulus(Kanwisher, 2017) information is transduced from 
one format into another and ultimately guides behaviour. 
 
Arguments over “what a neural signal codes for” can rapidly become sterile in the absence of 
any wider theory about what that region computes. A paradigmatic example of the intellectual 
cul-de-sac that a pure representationalist stance can lead to is the debate over the “function” 
(read: primary coding axis) of the “fusiform face area”, a portion of the human ventral stream 
that responds more robustly to images of faces that other objects in fMRI studies.  A number 
of research groups (and one in particular27) argued forcefully over a period of about 10 years 
that the “function” of this region was to code for faces, rather than to engage in more domain-
general processing. Whilst it is ultimately true that both cells and BOLD responses in this region 
seem to respond more vigorously to faces than to a range of other objects irrespective of the 
task context, in this debate it was largely overlooked that the “function” of any region is not to 
code for something. Rather, its coding properties are a by-product of the computations that it 
carries out; and ultimately the only substantive question is what a neural circuit computes, not 
what it codes for. The goal of any mature theory, must thus be not simply to assert what the 
                                                      
27 Let’s be fair and give Nancy Kanwisher the right of reply: you can see her perspective on this episode in the 
field’s history here: Kanwisher, N. (2017). The Quest for the FFA and Where It Led. J Neurosci 37, 1056-1061. 
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coding properties of a region are; it must be to define the computational principles by which 
representations are formed.  
 

 
 
The limits of the pure representationalist approach were beautifully laid bare by this extremely 
clever paper from the group of Konrad Kording28.  Building on a historical argument, the 
authors set out to highlight the limits of the interpretative logic that we habitually employ 
when conducting empirical investigations. Neuroscientists study a system they do not fully 
understand – biological brains – and on the basis of their findings, they make inferences about 
the functioning of the system according to an interpretative consensus in the field. For 
example, if a lesion to a region impairs a particular function, we typically assume that that 
region is causally involved in that function; if a cell responds to a given experimental variable, 
we typically assume that its job is to code for that variable. 
 
In their paper, the authors asked: if we take a system we do understand fully (because we built 
it), conduct comparable experiments, and apply the same interpretative logic, will be recover 
theories about the functioning of the system that are in accord with the (known) ground truth?  
The answer was firmly “no”.  The authors conducted “experiments” on the microprocessor 
used to control the screen pixels in an Atari video game, and carried out the equivalent of the 
“single cell recordings”, “lesions” and “connectivity analyses” typically employed by 
neuroscientists. Their data showed many of the stereotyped phenomena that are typically 
observed in neuroscience experiments (e.g. chips had “tuning curves”). However, we know 
that the consensus interpretative logic applied was entirely misplaced, because the 
conclusions that a neuroscientist would naturally draw from the data were simply incorrect 
(e.g. the chips were not encoding information from the screen).  This demonstrates, more than 

                                                      
28 Jonas, E., and Kording, K.P. (2017). Could a Neuroscientist Understand a Microprocessor? PLoS Comput Biol 
13, e1005268. 
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any other paper, the caution that must be applied when trying to understand what a neural 
system “represents” in the absence of a plausible theory about what it is computing and why. 
 

 
So, as we have discussed, neuroscientists like to talk in terms of the coding properties of cells 
in the brain, and their goal is to formulate a theory of how those coding properties arise. In 
trying to provide a wider answer to this question, as we will do here, it is worth beginning by 
contemplating how those coding properties arise in the first place. Neurons have receptive 
fields, that is, the portion of the external world to which they are sensitive. They also have 
tuning properties, that is, a function that describes how they respond to various parameters – 
such as the tilt of a grating or the frequency of a sound - that the experimenter has manipulated 
(or otherwise thinks are important for the function of the network in which the cell 
participates). But where do these coding properties come from?  
 
Listening to the extreme representationalist position taken by some researchers, it might be 
tempting to assume that these coding properties are endowed by the organism’s genetic 
heritage, i.e. each cell’s tuning sensitivity is hardwired by evolution, which has chosen to 
furnish V1 with edge detectors and IT with grandmother neurons. However, there is an 
alternative to this argument. To understand this alternative, it is important to realise that any 
cell’s coding properties are a direct function of its inputs.  Thus, a cell has a receptive field at a 
given location of retinal space because its inputs can be traced back to those photoreceptors 
that lie at precisely that position on the retina.  Thus, ultimately it is the patterns of neural 
connectivity that determine the coding properties of all cells. In the language of machine 
learning, these patterns of connectivity arise because of the optimisation principle that 
dictates how network weights (or synaptic strengths) are updated as a function of experience.  
 
In this lecture, we will discuss a new proposal, which is that “deep” neural networks offer a 
computational theory that jointly explains the representational properties of neurons in the 
primate ventral stream, as well as how the system allows animals to recognise objects.  We will 
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go on to offer a critique of this theory. But first, we will begin by explaining what neural 
networks are and how they work. 
 

3.3. Perceptrons and sigmoid neurons 
 

 
 
The invention of the computational tools from which neural networks are built predates even 
the Dartmouth conference at which the field of AI was officially inaugurated.  The precursor to 
all neural networks is arguably the threshold logic unit (TLU), first developed by Pitts and 
McCulloch in the 1940s.  The TLU is a computational component that combines binary inputs 
and then applies a threshold to generate a logical output [0,1].  In the TLU, the weights are 
handcrafted by the researcher, in the spirit of the GOFAI approach that sought to build 
powerful logical processing systems from a set of simple computational components.  
 
The perceptron was a successor to the TLU29.  The perceptron differs from the TLU in a number 
of ways, but for our purposes the most important is that the network is able to learn by itself, 
as weights are updated by a delta-rule like mechanism.  Note that today the term “perceptron” 
is often used when referring to a sigmoid neuron (see below), which is historically inaccurate. 
 
 
 

                                                      
29 This page explains the difference most clearly: http://ecee.colorado.edu/~ecen4831/lectures/NNet2.html 
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However, it is the next generation of network components – the sigmoid neuron – that is the 
most important precursor to contemporary neural networks. The sigmoid neuron takes real-
valued inputs and computes their weighted sum 𝑌. Rather than being converted to a binary 
output via a hard threshold, 𝑌 is passed through a sigmoid function (we have encountered this 
function above; it maps any number onto a value in the range [0,1] via an ogival curve). Below 
we shall discuss why this latter feature is important for learning. 
 
You may have noted the similarity between the computation conducted by a sigmoid neuron 
and multiple regression. You can think of the inputs 𝑋 as the predictor matrix and the output 
𝑌 as the dependent measure; the weights 𝑊 are the regression coefficients. In fact, with the 
inclusion of the sigmoid (logistic) function, you can think of a sigmoid neuron as implementing 
multiple logistic regression in an online fashion. 
 
The key feature of this class of network is that it is trained with supervision. A supervision signal 
indicates the “true” answer to the problem the network is trying to solve, as if provided by an 
external oracle or teacher. For example, let us imagine that the goal of the network is to classify 
a vector of inputs (say, the pixel luminance values in an image) as +1 (=cat) or -1 (=dog).  On 
each trial, the network sees an image and outputs +1 or -1.  Our optimisation principle aims to 
adjust the weights so that the network outputs a 1 whenever an input corresponds to a cat 
and -1 when the image is a dog.  This is what we mean by “learning” in a supervised neural 
network. 
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Most neural networks of this class are trained using gradient descent.  On timestep zero, one 
would first initialise the weights at random, and pass the inputs through the network. In a 
sigmoid neuron, this would entail computing the output as 𝑅 = 𝜎(𝑊 ∙ 𝑋 + 𝑏) where 𝑋 is the 
input vector, 𝑏 is an additive bias term, and 𝜎(∙) denotes the sigmoidal transform.  Let us say 
that the first image vector was actually a cat (i.e. +1) and the network output a value of 0.3 
(the weights are random, so this could be anything). To train the network, we need to specify 
a loss term (or loss matrix) that is, to state how bad any given outcome is.  For example, we 
can define our loss as the (squared) discrepancy between +1 and 0.3, or 0.72 = 0.49. 
 
The next step is to update the weights so that the loss is likely to be smaller on the next 
timestep – i.e. so our predictions are slightly more accurate. This can be done adjusting the 
weights according to their derivative (or rate of change) with respect to the loss. In other 
words, one can calculate how the loss is changing as the weights change and adjust the weights 
so that they are likely to minimise the loss in the future. This is the optimisation principle that 
underlies learning in neural networks.  To do this, in a sigmoid neuron, we update the weights 
as the outer product of the inputs 𝑋 and the loss, multiplied by a learning rate. The learning 
rate serves the same purpose as in RL models. 
 
Critically, learning by gradient descent is only possible when a small change in the weights leads 
to a small change in the output value in one direction or another (i.e. greater or smaller). This 
means that how “wrong” the network was (i.e. how large the discrepancy is between the 
observed and desired state of the network) varies smoothly with the values of the weights.  
This is not possible when the output changes abruptly between 1 and 0, as in networks with 
logical outputs. 
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To understand how gradient descent works, it is useful to visualise the loss as a function of 
different values that the weights can take. In the example above, we imagine that there are 
just 2 weights (for ease of visualisation). There is a global minimum to the loss, that is a setting 
for 𝑤1 and 𝑤2  where the loss is minimal. If this value is close to zero, then the network has 
converged and its predictions will be accurate.  You can think of the process of gradient descent 
as a ball rolling down this loss landscape to the minimum.  The rate at which the ball falls will 
be given by the learning rate.  If the learning rate is too large, the ball will miss the global 
minimum and jump back up the other side of the valley, even if it is heading in the right 
direction. This is why we often need a low learning rate when conducting gradient descent. 
 
For linear problems, i.e. those that can be solved by a sigmoid neuron, the landscape is convex. 
That means that there is a single global minimum, and so gradient descent should always find 
the best setting for the weights.  However, for more interesting nonlinear problems (e.g. cat 
vs. dog classification from image pixels), this is not always the case. 
 

3.4. Depth: the multilayer perceptron 
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What do we mean by a linear problem? In the graph above, I have plotted the possible values 
taken by a network with 2 inputs, 𝑥1 and 𝑥2.  Let’s imagine for simplicity that inputs are either 
+1 or -1.  A problem is linear if there is a straight line that can be drawn through the space 
defined by values of 𝑥1 and 𝑥2 that cleanly separates the inputs into their respective categories. 
In the example given, the inputs 𝑥1 = 1, 𝑥2 = 1 and 𝑥1 = −1, 𝑥2 = −1 belong to one 
category, whereas the inputs 𝑥1 = −1, 𝑥2 = 1 and 𝑥1 = 1, 𝑥2 = −1 belong to another. As can 
be seen, there is no single straight line that can be drawn in these 2 dimensions that separates 
the inputs into 2 categories.  The problem shown is known as the XOR problem. The failure of 
perceptrons (and sigmoid neurons) to solve this problem vastly dampened initial enthusiasm 
about AI research and let to the first “AI Winter”, a wholesale withdrawal of funding from AI 
research and substantial slowdown in the field’s progress. 
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Luckily, however, there is a solution to this problem, but it took AI researchers a while to work 
it out.  In hindsight, it’s simple: nonlinear problems require nonlinear computations.  One way 
to make your network learn nonlinear solutions is introduce an additional “hidden” layer to 
the network, in which the activations are a nonlinear function of the inputs.  This is achieved 
by computing a hidden activation 𝐻 = ℎ(𝑋 ∙ 𝑊) where ℎ(∙) denotes a nonlinear transform of 
some sort. A simple and effective nonlinear transformation is to set all negative activations to 
zero; this is knowns as a rectified linear unit or ReLU. This encourages the network to form 
sparse activations, which as we shall see later in the course, tend to help increase network 
capacity.  The output 𝑌 is now computed not directly from 𝑋, but by passing 𝐻 through another 
set of weights. This class of neural network is typically known as a “multilayer perceptron”, 
even though technically it involves the stacking of sigmoid neurons30. 
 
For our purposes, the critical intuition is that depth (in conjunction with nonlinear 
transduction) helps the network solve complex classification problems.  This gives us an insight 
into why the primate visual system contains multiple stacked processing stages (V1, V2, V4, IT 
etc) and why neuronal firing rates tend to be a nonlinear function of their inputs. 
 
 

                                                      
30 Have a look at these books, they are extremely helpful: Neural networks and deep learning.  Nielsen (2015). 
 Deep Learning. Goodfellow, Bengio & Courville (2016) 

 
 

http://neuralnetworksanddeeplearning.com/
http://www.deeplearningbook.org/
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How can the MLP solve the XOR problem? By including multiple layers with nonlinearities, the 
network can learn a “curved” (nonlinear i.e. “not [straight] line”) boundary through the input 
space, as shown on the figure. 
 

3.5. Challenges: optimisation, generalisation, and overfitting. 
 
 

 
 
This class of network wasn’t really built until the 1970s. So why did it take so long to work this 
out?  Surely it should have been obvious that nonlinear problems require nonlinear solutions? 
Well, the answer is that it was obvious, but the tricky part is knowing how to train a network 
with multiple layers.  The breakthrough came with the discovery of backpropagation, which is 
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a method that allows the gradients to be computed successively, from the output layer back 
to the input layer, via a principle known as the chain rule.  A detailed explanation of 
backpropagation is beyond the scope of this course, but there are numerous online 
explanations for those who are interested31. 
 

 
However, although backpropagation is a powerful technique, learning is hard in deep 
networks. This is because nonlinear problems often have nonconvex solutions.  That means 
that in addition to the global minimum, there may be one or more local minima in the loss 
landscape.  If the weights fall into a local minimum, gradient descent may not be able to pull 
them out, because a move in any direction will increase, rather than decrease the loss.  This is 
a ubiquitous problem in deep learning. 
 

                                                      
31 For example, https://machinelearningmastery.com/implement-backpropagation-algorithm-scratch-python/ 
 

https://machinelearningmastery.com/implement-backpropagation-algorithm-scratch-python/
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We began this lecture by pointing out the infinite variety of sensory experience. The key 
advantage of parametric models (such as a neural network) over nonparametric models (such 
as the lookup table in standard RL models) is that they can generalise. Of course, what we want 
is not just for the network to be able to classify the inputs that we have trained it on. We know 
what the labels are for those inputs – we had to, in order to be able to provide the supervision 
signals! What we want is to train the network on a dataset 𝑋 for which we know the right 
answer (or “ground truth”) but then test it on a new set of inputs for which we want to know 
the answer. This is of course similar to what happens during human development: we are 
taught what objects are (“that is a cat”) and then we can identify new cats without further 
training. 
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However, finding the right training set can be really tricky! Let’s take an example.  Imagine that 
the network is trained to classify the set of images shown on the upper left of the figure above 
as “cat” or “dog”.  The loss is plotted on the upper right: it converges nicely to zero, showing 
that the network has learned. Now, we test it on some unseen examples, like the ones on the 
bottom left, but it is completely unable to distinguish them. What has happened? 
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Well, there are lots of things that could have gone wrong, but here’s one example.  If you 
notice, the training set varies on a number of features that might distinguish cats and dog. For 
examples, you recognise the cats by their distinctive cat shape. But in the training set we have 
chosen, they also differ on something much simpler – size! The dogs are all larger.  The figure 
on the top right plots two dimension that the network could learn: size and ear pointiness. You 
can see that there is a boundary that perfectly segregates cats from dogs – all the network 
needs to do is learn to count the number of black pixels in the image (animal size).  So, it learns 
to do this, and if our test set involves exemplars that do not differ in size (larger dots in the 
figure), it won’t be able to tell them apart.  The network hasn’t learned anything specific to 
cats and dogs at all – it’s just learned to be a size classifier. 
 

 
This is one example of how a network can overfit to the training dataset.  This means that it 
learns something very specific which is true in the training set but not true in general.  In 
general, the probability that this will happen depends on network size. If you make the network 
too big, it will overfit your data; too small, and it will underfit, because it has insufficient 
capacity. 
 
To illustrate this point, In the figure above, I show some (noisy) training data generated by the 
noisy quadratic function 𝑦 = 𝑥2 + 𝑛𝑜𝑖𝑠𝑒.  I then show the fit of various polynomial models 
that are trained on these noisy data but asked to generalise to the ground truth (non-noisy test 
data).  A model with just 2 parameters (i.e. a first-order polynomial) underfits the training data, 
i.e. it doesn’t have the expressive power to capture the quadratic form of the function. A model 
with 11 parameters does a fantastic job – capturing every small wiggle in the data. However, 
when we look at the (held out, i.e. unseen) test data, it fits badly, because it has learned to fit 
to the noise in the data, rather than to the underlying signal, which is the part of the data that 
is consistent between training and test.  A second order polynomial, however, fits the data just 
right. 
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4. Structuring information in space and time  
 
4.1 Convolutional neural networks and translation invariance 
 
 

 
Feedforward networks can be powerful tools for data processing, but they don’t generally do 
very well at classifying natural images. This is because of the multiple sources of variation that 
occur in natural images.  In an image of a cat, that cat might be big or small; or on the left or 
the right of the image. One of the salient hallmarks of neurons in the more anterior parts of 
the primate ventral stream is that they display invariance to size, rotation and scale of the 
object(s) that they are selective for.  An example is shown above. This cell in macaque IT 
responds vigorously to a pair of binoculars when presented at fixation, and although the 
response drops off somewhat as the object is translated vertically, it still exhibits a strong 
response. This neuron has (a degree of) translation invariance for its preferred feature. 
Feedforward neural networks essentially learn to classify images based on individual pixel 
values and their interactions; the network would have to see binoculars in every possible 
location before it was able to satistfactorily classify them in a position-invariant fashion. This 
makes them very sample-inefficient. 
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The real breakthrough in image recognition using neural networks came with the invention of 
the convolutional neural network (CNN)32. The CNN builds in an algorithmic feature that 
ensures translation invariance, and it does so by copying a salient feature of biological visual 
systems – that rather than each neuron receiving data from every single input location (e.g. 
image pixel), network units have spatially selective receptive fields, i.e. they learn a (local) filter 
that is specific to a location in space. So for example, in a 100 x 100 pixel image, a unit in the 
first hidden layer might receive inputs only from the first 5 x 5 square of pixels in the top left 
hand corner.  Critically however, each filter is “shared” across multiple regions of space, with 
the resulting activations stacked along a separate dimension, as if each unit were not a single 
neuron, but a bank of neurons with distinct RF locations but the same tuning properties. In this 
way, the network is able to “share” information learned at one location (i.e. that pointy ears in 
the top left corner predicts “cat”) with other locations, so that the network can learn to identify 
a cat by the presence of pointy ears in any location on a subsequent image.  This type of 
spatially selective, convergent processing across local filters that tile the input space is key 
algorithmic feature of the visual system in mammals. 
 

                                                      
32 The classic paper for convnets is this one: http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf 
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CNNs incorporate other features that are characteristic of biological vision. Firstly, at each 
stage the image is downsampled via a pooling operation. This ensures that the dimensionality 
of the inputs is reduced at each layer, much like we saw above in the primate visual system.  
This compression increases the efficiency of image representation.  Secondly, CNNs often use 
gain normalisation33. Normalisation is a canonical feature of computation in neural circuits, 
including the visual sytems, and works by dividing (or normalising) activations in a particular 
cell by the local average activation, thereby accentuating differences. It is well known that 
visual circuits employ similar principles, for example via lateral inhibition among simple cells in 
V1. 
 

                                                      
33 Carandini, M., and Heeger, D.J. (2012). Normalization as a canonical neural computation. Nat Rev Neurosci 
13, 51-62. 
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This slide shows a schematic of a simple CNN, including the various computational operations 
it involves: nonlinear transduction (as in the MLP), but also local filtering, weigh sharing, 
pooling, and normalisation. These convolutional layers are typically followed by a set of fully-
connected layers, as in an MLP. After training with gradient descent (via backpropagation), 
these simple operations, combined and stacked successively into multiple layers, allow 
complex, high-dimensional image signals to be “disentangled” into a set of discrete class labels.  
Each layer of the CNN is a repeating motif with similar form; just like in neocortex, a simple 
algorithm (implemented in the canonical microcircuit) is repeated at each processing stage.  
Complex behaviour emerges from a succession of simple operations. 
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So what can CNNs actually do? Well, they are now very, very good at image recognition. A 
standard annual challenge, known as Imagenet34, requires researchers to build a neural 
network that can classify a held out set from 1.2M labelled images of natural scenes, into the 
correct category (from 1000 possibilities).  Adult humans typically display ~5% error on this 
task (they are not perfect because some of the images are unclear, and some of the categories 
are quite obscure).  On the right, I have plotted the performance of the winning network over 
recent years. The most substantial drop in error came in 2012, with the introduction of CNNs. 
State of the art networks, built on the principles we have outlined here, now perform at < 3% 
error,  i.e. they show “superhuman” image classification capacity. 

                                                      
34 http://www.image-net.org/ 
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The power of neural networks, and in particular CNNs, is being felt everywhere, and driving a 
revolution in data processing (and the birth of the field of “data science”.  The same principle 
holds as for image recognition: if you have a large labelled dataset, you can train a neural 
network to make predictions about new, unlabelled data.  The applications of this approach 
cross the domains of health, education, marketing and scientific research.  Sometimes the uses 
can be controversial. For example, in 2018 it came to light that Cambridge Analytica, a data 
science company, had collected a large body of data from people’s Facebook pages, and 
trained a neural network to predict their political preferences. This allowed the company to 
predict, from any new Facebook page, for whom they were likely to vote. This information was, 
understandably, of great interest to political campaigners, who were sold the predictions so 
that they could direct personalised political advertising towards Facebook users. This led to 
accusations that the company had unfairly biased the outcome of the 2016 US Presidential 
election and UK referendum on membership of the European Union. 
 

4.2. Convnets and the ventral stream 
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After training, CNNs develop neural representations, just like the mature visual system in 
mammals.  To what extent do they resemble the response properties found in biological 
systems? This video35 shows some beautiful examples of the sorts of features that individual 
CNN units become sensitive to, including faces, textures and text. 

 
We began by asking whether deep neural networks provide a plausible computational theory 
of how the representational properties of visual neurons emerge. This is still a matter of 

                                                      
35 http://yosinski.com/deepvis 
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considerable contention.  However, there is evidence to suggest that they do.  One striking 
feature of CNNs is that after training, the units in their early layers form representational 
properties that resemble those in the early stages of biological visual systems, developing 
filters that are orientation and spatial-frequency selective or that display colour opponency (as 
in V1). 
 
 
 

 
 
There is also evidence that the preponderances of neural selectivity for different image classes 
in the higher layers match those in primate IT. For example, the figure above shows a plot of 
the average network response to different classes of object (e.g. animals, cars, faces, tables) in 
red, overlaid on the selectivity of IT neurons recorded from different sites.  The convergence 
is striking! 36 

                                                      
36 Yamins, D.L., Hong, H., Cadieu, C.F., Solomon, E.A., Seibert, D., and DiCarlo, J.J. (2014). Performance-
optimized hierarchical models predict neural responses in higher visual cortex. Proc Natl Acad Sci U S A 111, 
8619-8624. 
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In fact, it’s salient that this similarity in coding properties emerges even when the network is 
simply trained to perform well, rather than optimised to recreate the behaviour of biological 
cells. In fact, if the network is trained so that the loss reflects discrepancy with IT data, rather 
than object label classification error, then the variance in IT data explained is quite high, as 
would be expected. However, it’s just as high (or higher) if the network is trained simply to 
perform well on the task, and the better it performs, the more the resulting activations 
resemble the responses of IT cells. 
 

 



November 2018 89 

 
Another, potentially more powerful means to visualise the coding similarity between deep 
neural networks and IT representations is to use a technique known as representational 
similarity anlaysis (RSA).  RSA measures the pattern of neural responses (across multiple cells, 
or voxels in an fMRI experiment; or unit activations in a neural network) and computes the 
degree of similarity among patterns elicited under various experimental conditions. Thus, if 
your inputs are image classes, you can measure the pattern for cats, dogs, faces, cars and 
tables, etc and compute the 𝑛 × 𝑛 similarity matrix where 𝑛 is the number of classes.  On the 
figure above, I have visualised similarity matrices for a large number of object classes for 
human extrastriate visual cortex (from BOLD), cells in monkey IT, and the unit activations in an 
CNN. There is a fair degree of similarity between the CNN and the neural data (although it is 
mainly driven by a distinction between animate/inanimate objects and a preference for 
faces)37. 

 

4.3.  Limitations of deep networks 
 
 

 
 
Are deep networks a plausible model of the primate ventral stream? Well, above we have seen 
evidence that they are. However, it is also important to point out some limitations of deep 
networks.  One recent challenge has come from experiments which show just how startlingly 
easy it is to fool them.  One approach, known as adversarial methods, trains a separate network 

                                                      
37 Khaligh-Razavi, S.M., and Kriegeskorte, N. (2014). Deep supervised, but not unsupervised, models may 
explain IT cortical representation. PLoS Comput Biol 10, e1003915, Kriegeskorte, N., Mur, M., and Bandettini, 
P. (2008). Representational similarity analysis - connecting the branches of systems neuroscience. Front Syst 
Neurosci 2, 4. 
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to try to find images that the client CNN will classify incorrectly. In the example above38, the 
network has learned to classify (house) cats and dalmations.  The adversarial network “reads 
the mind” of the CNN and tries to adjust one of the images incrementally until it maximally 
resembles an image of a different class, but without losing its class label. The adversarial 
network is able to find images that the CNN still thinks are a dalmation, but which are, to the 
human eye, definitely not a dalmation. In other words, CNNs learn to perform accurately at 
image recognition on average, but they make mistakes that a biological system would never 
make.  CNNs do not learn robust policies for object recognition – they can classify, but appear 
not to understand, what objects are. We shall return to this issue in lecture 6,  when we discuss 
unsupervised methods. 
 

 
 
There are other simple things that CNNs fail badly at. One is counting. The images above are 
much less complex than the natural scenes in the Imagenet competition. But a neural network 
that can learn to perform image classification with a high level of accuracy fails at the simple 
task of stating whether there are 1,2,3,4,5 or 6 shapes in the image39.  Why is this? 
 
 
 
 
 

                                                      
38 https://arxiv.org/abs/1712.04248 
39 https://arxiv.org/abs/1802.05160 
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One possible answer is that deep neural networks may be a plausible model of the ventral 
stream, but object recognition in humans relies on both the dorsal and the ventral stream. In 
fact, patients with dorsal stream lesions – such as in Balint’s syndrome – exhibit many of the 
same characteristic deficits of trained CNNs, in that they have difficulty counting, or performing 
matching or comparison judgments for novel stimuli40.  Later in the course, we will discuss 
ways in which AI systems might be augmented such that they more closely resemble the full 
functioning of the primate visual system. 
 
  

                                                      
40 Friedman-Hill S, Robertson LC, Treisman A. Parietal contributions to visual feature binding: Evidence from a 

patient with bilateral lesions. Science. 1995;269:853–855 
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4.4. Hierarchies of temporal integration in the brain 
 
 

 
In the previous lecture, we encountered convolutional neural networks (CNNs). CNNs take 
advantage of the spatial structure of natural images: nearby pixels tend to be related in a 
fashion that predicts the object class. This is what allows the success of methods that filter 
locally, and then share filters across space.  However, in the natural world, sensory signals are 
structured in time as well as space. In many domains it is necessary to process how sensory 
signals unfold in time to know how best to act, such as when judging the speed and direction 
of an oncoming vehicle, or when trying to understand a sentence spoken in natural language. 
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The class of network we discussed in the previous lecture, known collectively as feedforward 
networks (a term that encompasses both MLPs and CNNs), has no way of processing 
information in time. This is because their activations are uniquely determined by the current 
input; there is no mechanism for information that was present in the network on the previous 
timestep 𝑡 − 1 to influence the current network state at time 𝑡.  Thus, despite the power of 
CNNs for static image recognition, they would fail at other, very simple tasks. Imagine that the 
inputs are again a stream of images, but the task is now to output whether each image is the 
same as, or different from, the previous image. Standard feedforward networks would fail 
utterly to learn this task, even if there were only 2 images in the training set. This is because 
they have no activation memory. 
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Of course, we know that this is not true of biological networks.  In both rodents and primates, 
cells in higher association cortex, including the prefrontal and parietal cortices, exhibit 
persistent, content-specific activation, which is thought to form a substrate for short-term 
integration processes or working memory.  Take, for example, the classic result on the slide 
above, which shows data recorded from a cell in the dorsolateral prefrontal cortex (DLPFC) of 
the macaque monkey during a task that involves the presentation of a spatial cue, its 
subsequent extinction. Following a delay period, a “go” signal prompts the monkey to make a 
saccade to the remembered location of the cue. During the delay period, cells in the DLPFC fire 
persistently in a spatially selective fashion. For example, the cell shown is tonically active when 
the cue was initially presented in the lower central portion of the screen, but not elsewhere41.  
Similar neurons are observed in the parietal cortex, and during object match-to-sample tasks, 
in the anterior portions of the temporal lobe discussed in the previous lecture. 

                                                      
41 Goldman-Rakic PS. Cellular basis of working memory. Neuron. 1995 Mar;14(3):477-85. 
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In fact, it is a principal of cortical organisation in primates that cells in more anterior regions 
are found to have longer temporal windows of integration.   This is nicely demonstrated by this 
clever fMRI experiment from Hasson and colleagues42, who showed participants silent 
(Chaplin) films, but jumbled the scenes over different timescales. For example, for some films 
the first and second half of the story might have been switched, whereas for others the overall 
story remained intact but short segments were mixed up within a short period. Using a 
technique that measured the extent to which BOLD signals correlated across the participant 
cohort, the researchers were able to identify brain regions that coded for information over 
short timescales (i.e. where brain signals were decorrelated by mixing scenes within short 
periods) and over long periods (where there was an invariance to such short switches, but 
disruption when the jumbling occurred over longer segments).  They found that there was a 
hierarchy of timescales across the cortex, with early visual regions sensitive to short timescale 
information and more anterior regions to the longer episodes, presumably because of their 
more substantial involvement in processing the overall narrative of the film. 
 

4.5. Temporal integration in perceptual decision-making 
 

                                                      
42 Hasson, U., Yang, E., Vallines, I., Heeger, D.J., and Rubin, N. (2008). A hierarchy of temporal receptive 
windows in human cortex. J Neurosci 28, 2539-2550. 
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How does the brain integrate information over time, at the computational level? This question 
has been extensively addressed in the field of perceptual decision-making, where a long 
tradition has sought to define optimal principles for sensory integration and compare these to 
data from psychophysical experiments in which decisions are based on multiple samples of 
from an input stream43.  In one canonical paradigm, a monkey or human views a psychophysical 
stimulus consisting of a cloud of moving dots. Some of the dots move randomly, but other 
move in a fixed direction, such as left or right. The observer’s task is to report the net direction 
of motion.  Because the motion direction signals are independent from frame to frame, any 
one pair of frames yields a very noisy estimate of the correct answer. However, a good estimate 
can be formed by sequentially sampling and integrating information across frames.  This occurs 
because the noisy estimates will average out to zero over time, yielding a precision of the net 
direction estimate that grows with the number of samples taken (i.e. frames viewed).  Indeed, 
as might be expected, human and monkeys perform more accurately under long than short 
viewing durations, as if they were successfully integrating sensory information across time. 
 
Theoretical work dating back to the 1940s (and in fact, to Alan Turing’s contribution to the 
British wartime effort during World War II) 44 has identified an optimal quantitative framework 
for understanding how information should be integrated to maximise certainty about the 
correct answer, given the fewest possible samples. A decision about the class label of a noisy 
sensory stimulus should ideally be based on the likelihood ratio, that is the relative probability 

                                                      
43 Bogacz, R., Brown, E., Moehlis, J., Holmes, P., and Cohen, J.D. (2006). The physics of optimal decision 
making: a formal analysis of models of performance in two-alternative forced-choice tasks. Psychol Rev 113, 
700-765, Gold, J.I., and Shadlen, M.N. (2001). Neural computations that underlie decisions about sensory 
stimuli. Trends Cogn Sci 5, 10-16, Wald, A., and Wolfowitz, J. (1949). Bayes Solutions of Sequential Decision 
Problems. Proc Natl Acad Sci U S A 35, 99-102. 
44 Gold, J.I., and Shadlen, M.N. (2002). Banburismus and the brain: decoding the relationship between sensory 
stimuli, decisions, and reward. Neuron 36, 299-308. 
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of observing the data given that is belongs to one category or the other.  Where multiple 
samples of information are available, the respective likelihoods should be combined by 
multiplication; or equivalently, by summation of log likelihood (ratios).  This approach, known 
as the sequential probability ratio test (SPRT), grandfathers most current models of sensory 
integration in biological brains, and was – incidentally – of great help in cracking the Enigma 
code during war. 
 

 
 
The theoretical framework furnished by the SPRT is popular because it provides the foundation 
for a theory that has enjoyed great success in jointly explaining psychophysical behaviour in 
paradigms such as the dot motion discrimination task, and the firing rates of neurons in the 
lateral parietal cortex45. Cells in lateral intraparietal (LIP; identified by their exhibition of 
persistent delay period activity) have spatially specific response fields, and researchers begin 
by identifying cells whose RF is congruent with one of the targets to which the monkey makes 
a saccade when responding (e.g. the location for signalling “right”). When the sensory signal is 
congruent with that target (e.g. the dots are moving right), these LIP cells show gradual 
increases in firing rate that scale positively with the signal-to-noise ratio of the stimulus, as if 
the momentary firing rate were signalling the degree of cumulative evidence for a given 
response.  This pattern of neural activity can be explained if the cells were integrating (or 
adding up) the relative (log) evidence over time for one of the two responses, as predicted by 
the SPRT and/or related models that approximate it, such as the drift-diffusion model (DDM). 
 
 

                                                      
45 Gold, J.I., and Shadlen, M.N. (2007). The neural basis of decision making. Annu Rev Neurosci 30, 535-574, 
Hanks, T.D., and Summerfield, C. (2017). Perceptual Decision Making in Rodents, Monkeys, and Humans. 
Neuron 93, 15-31. 
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Subsequently, this framework for understanding psychophysical judgments in settings that 
require sequential sampling and integration of sensory information has been elaborated with 
a wide family of competing models.  Among the most biologically plausible of these is a model 
proposed by Wang and colleagues46, which argues that sensory inputs (e.g. evidence for left 
or right) is fed forward to an intermediate layer, were both integration and mutual inhibition 
drive a nonlinear process that leads one of the responses to win a “race” to a decision 
threshold, through recurrent dynamics.  This class of recurrent model has the benefit of 
biological plausibility, as well as the merit of doing a very good job of fitting both 
psychophysical and neural data. 
 

4.6. Recurrent neural networks and the parietal cortex 
 

                                                      
46 Wang, X.J. (2012). Neural dynamics and circuit mechanisms of decision-making. Curr Opin Neurobiol 22, 
1039-1046, Wong, K.F., and Wang, X.J. (2006). A recurrent network mechanism of time integration in 
perceptual decisions. J Neurosci 26, 1314-1328. 
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Starting in the 1990s, methods were developed that allowed neural networks to engage in a 
similar integration of information across time. The name given to this class of network is a 
“recurrent neural network” (RNN) and the kind of dynamics it is capable of generating – 
nonlinear, time-varying competitive interactions among inputs – is closely related to those 
displayed by biologically plausible models for perceptual decisions. However, the crucial 
difference is that recurrent neural networks have large numbers of freely trainable 
parameters, making them suitable for dealing with complex, real-world domains such as time-
varying natural vision (e.g. video) and spoken or written language.  This is unlike the parameters 
of models under the sequential sampling framework, which are typically hardcoded by the 
researcher. 
 
The simplest recurrent neural networks extend the architecture of the multilayer perceptron 
(MLP) in one very simple way47. The inputs at time 𝑡 in the hidden layer 𝐻𝑡, rather than being 
determined exclusively by the weights from the inputs layer (here, denoted 𝑈), are also driven 
by the previous state of the hidden layer 𝐻𝑡−1 passed through a separate set of weights 𝑉.  This 
simple addition allows a recurrent network to dynamically learn to maintain some information 
(and lose other information) between time steps, permitting decisions about data streams that 
are structured in time.  Of note, the network can be trained to provide a sequence of outputs, 
making it the tool of choice for researchers interested in domains that required temporally 
structured motor plans, such as machine translation. Where appropriate, RNNs can be 
combined with convolutions and/or other successful algorithmic features of feedforward 
neural networks. 
 
 

                                                      
47 http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/ 
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RNNs are powerful, as shown in the example above.  Here, a recurrent network was trained to 
predict segments of text from the complete works of Shakespeare. A cursory glance at the 
output it produces might fool you into thinking that it has really learned to write a new 
Shakespeare play – it looks remarkably realistic! (However, on closer inspection, the text 
produced is largely nonsense48. The network has learned the vocabulary and syntax typical of 
Shakespeare’s 37 plays – but not the meaning). 
 

                                                      
48 Lots of nice examples here http://karpathy.github.io/2015/05/21/rnn-effectiveness/ 
 

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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Over the last few years, researchers in neuroscience have come to use RNNs as candidate 
explanatory models for the coding properties of cells in the parietal and prefrontal cortices, 
just as we saw in the previous lecture that CNNs have been proposed as models of the ventral 
stream.  Data from one exemplary study is shown above49. Here, the authors again used a dot 
motion stimulus in macaques, but rather than simply discriminating whether the dots tended 
left or right, monkeys were presented with 2 bursts of motion energy separated by a delay and 
asked to respond whether the two motion directions belonged to a same or different category. 
Category was defined by a line that cleaved the 360° space of motion directions, such that (for 
example) those directions that lay above the horizontal meridian (broadly, dots moving “up” – 
red arrows in the upper central panel) formed one category, and all others (blue; “down”) 
formed another. 
 
A key feature of neural data recorded in this task – and in many other psychophysical and 
working memory tasks – is the high degree of mixed selectivity exhibited by neurons in the 
parietal and prefrontal cortices.  In other words, rather than simply responding with content-
specific persistent activity – as reported in early working memory studies – neurons exhibit 
extremely varied coding properties and are variously sensitive to a range of task variables with 
a confusing array of time-varying response profiles.  Some example cells from LIP and the 
DLPFC are shown in the figure above. The authors then trained an RNN to perform the task; 
the recurrent dynamics of the RNN allowed the network to maintain information across the 
delay period and make accurate match-to-sample judgments just like the monkeys did. 
Strikingly, “recordings” from the hidden units of the RNN model display an extremely similar 

                                                      
49 Chaisangmongkon, W., Swaminathan, S.K., Freedman, D.J., and Wang, X.J. (2017). Computing by Robust 
Transience: How the Fronto-Parietal Network Performs Sequential, Category-Based Decisions. Neuron 93, 
1504-1517 e1504.  See also this paper, which focusses on FEF rather than parietal cortex: Mante, V., Sussillo, 
D., Shenoy, K.V., and Newsome, W.T. (2013). Context-dependent computation by recurrent dynamics in 
prefrontal cortex. Nature 503, 78-84. 
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heterogeneity, even though the network was not trained in a way that guaranteed the 
emergence of mixed selectivity.  
 
 

 
 
Building on these findings, in this study the authors took the analysis a stage further, using 
multivariate methods to define the “neural state space trajectory” of both the LIP/PFC neurons 
and the RNN units.  The state space analysis takes the neurons x time matrix of neural activity, 
and compresses it using a dimensionality reduction technique similar to principal components 
analysis (PCA) to yield a (smaller) components x time matrix.  In LIP, the first principal 
component extracted from the overall neuronal activity during the delay period encoded the 
(signed) level of disparity between the motion direction and the boundary, as shown in the left 
hand of the centre/lower panel (dark red and dark blue lines are furthest from boundary in 
each category; light red/blue are close to boundary). The second components reflected the 
temporal derivative of this activity, i.e. the extent to which it onset sooner or later. The same 
analysis on the RNN mimicked both of these components (inverted in these plots because PCA 
is rotation invariant).  Subsequently, the neural “state space” is plotted as the values of the 
first principal component against another across time; this visualises a low-dimensional 
manifold on which the neural activity evolves at various points during the trial.  As can be seen, 
both following presentation of the sample, i.e. the first motion stimulus (where neural activity 
again segregated according to distance to boundary) and following onset of the probe, i.e. the 
second motion stimulus (where the neural activity segregated according to whether the trial 
was a match or a mismatch), the RNN displayed highly similar dynamics. The authors present 
these results as evidence that the RNN offers a plausible computational account of the neural 
coding properties and their time-varying dynamics during this match-to-category task. 
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RNNs sound great, don’t they?? They are powerful tools that look like plausible models of 
higher cortical activity. Well, RNNs are great, but like with many tools in deep learning, the 
great challenge is how to train them. This problem is particularly acute in RNNs, because they 
require a special training method, known as backpropagation through time (BPTT) which is 
both technically limited and biologically rather implausible.  To understand how to train an 
RNN, it is worth revisiting the optimisation methods for feedforward neural networks.  Recall 
that the MLP is trained with backpropagation, that is, the successive computation of the 
gradients for each computational stage of the network, from output through hidden back to 
input.  The trouble with an RNN is that the activity states in both hidden (and consequently) 
output layers depend not only on their inputs on the current timestep, but on all the successive 
inputs they have received on previous timesteps! To accurately compute the derivatives and 
adjust the weights, thus, the network has to be “unfolded” so that each of its past states can  
contribute to the computation of the gradients50. 
 

                                                      
50 http://colah.github.io/posts/2015-08-Understanding-LSTMs/ 
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The problem with this approach is that the network needs to retain a full memory of its past 
activity states over some reasonable time window. This is clearly both computationally 
cumbersome and biologically implausible. In particular, we might often want to make 
predictions about events that may be contingent on inputs received far back in the past. 
Consider two examples from natural language. Imagine I am trying to predict the last word in 
the sentence “The clouds are in the…”.  Here, I don’t need to look too far back to find the 
relevant clue; I can integrate over a relatively short time window, and so BPTT is feasible. 
Imagine however, a passage of text that begins “I grew up in France…” followed by a set of 
other information, and the missing word follows the subsequent phrase “I can speak..” Here, 
the network might need a lengthy integration window – spanning perhaps an entire paragraph 
– to make a reasonable prediction.  BPTT is poorly adapted for this sort of situation. Now, you 
might begin to see why that RNN-generated Shakespeare looked superficially plausible but 
lacked meaning – because the RNN doesn’t have any sense of the narrative structure of the 
story, in part because it’s temporal integration window is limited by the insufficiencies of BPTT.  
Of note, however, this might be less of a problem when considering relatively rapid 
discrimination or working memory judgments in the sensorimotor domain (e.g. made over just 
a second or two). 
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In addition to the computational expense and limited of biological plausibility, RNNs are prone 
to another problem – that of vanishing gradients.  In fact, this problem is not unique to RNNs, 
but occurs whenever a network is being trained using backpropagation through many separate 
computational stages (such as a very deep feedforward network).  Vanishing gradients occur 
when lots of very small derivatives are multiplied together, potentially yielding a infinitesimally 
small update signal.  All in all, the problem that RNNs suffer from can be cast in general terms: 
when dealing with time-varying information, it’s hard to assign credit for outcomes that may 
occur several steps after the input that provoked them.  It’s rather like working out who 
infected you when you become ill with a virus that has a long incubation period – it could have 
been almost anyone!  This problem, known as temporal credit assignment, is a major challenge 
for biological and artificial systems alike. 
 

5. Computation and memory systems 
 

5.1. Gating in working memory systems 
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Thus far we have seen that RNNs provide a powerful tool for action selection based on time-
varying streams of data. We have also seen that they can be observed to predict the 
heterogeneity of coding properties observed in the parietal cortex during working memory and 
perceptual decision tasks. However, we have also discussed how RNNs involve computationally 
costly and biologically implausible training methods (BPTT), especially when a long history of 
stimulation must be taken into account to select a response.  How is it then that humans are 
able to both learn and decide over multiple, often prolonged timescales? 
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A critical intuition is that humans (and many other animals) don’t rely on a single memory 
system. Memory systems in most animals, and especially in mammals, are modular. Evolution  
has furnished animals with brain structures that allow information to be encoded, maintained 
and selected over multiple timescales. Above, I show a diagram that is often given on 
introductory psychology courses concerning human memory, which attempts to provide a 
taxonomy of human memory. Some of the modules seem to relate to processes we have 
already discussed. For example, “conditioning” is closely related to the concept of model-free 
RL (lecture 2) and the temporal dynamics of information integration was discussed previously 
(lecture 4) in the context of RNNs. Although we might reasonably dispute this taxonomy, the 
salient point is that there are many interesting and distinct memory modules. What 
computational problems have these multiple memory systems evolved to solve? 
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In the current lecture, we will focus on two structures – the prefrontal cortex and hippocampus 
– that are involved in more complex forms of memory and control. We will argue that these 
structures play an important role in learning and making decisions over multiple distinct 
timescales.  We’ll start with the PFC. 
 
 

 
Firstly, recall that in the previous lecture we discussed the limitations of backpropagation 
through time: although it works well over reasonably short timescales, such as those that might 
be relevant for rapid sensorimotor control, it’s ineffective and/or implausible as a model for 
how information from the distant past can be brought to bear upon a decision. 
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In particular, we are going to return to the proposal made earlier – that the brain involves 
multiple hierarchies of temporal integration, and that the integration window grows as one 
progresses along the rostro-caudal axis of the neocortex. We focussed on the hierarchy from 
sensory regions to the parietal cortex. However, we can extend this yet further. One might 
associate the parietal cortex (and some caudal prefrontal regions, such as the premotor cortex 
and FEF, with which parietal cortex is densely monosynaptically interconnected) with more 
rapid sensorimotor control.However, other more anterior portions of the PFC subserve action 
selection over much longer timescales, allowing more complex planning and reasoning 
processes that require extended maintenance and manipulation in working memory.   
 
In support of this view, we know from classic neuropsychology that unilateral lesions to the 
parietal and premotor cortices lead to hemispatial neglect, where participants fail to engage 
in action selection towards the side of space contralateral to the lesion, indicative of a deficit 
of simple action selection. However, lesions to the anterior PFC lead to more subtle disruptions 
of behaviour, whereby motor control is unimpaired but patients display disordered planning 
and reasoning, as if they were unable to select behaviours according to a long-term goal. 
 

5.2. Working memory gating in the PFC 
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In fact, this theory that there is a gradient of action selection over multiple timescales has been 
formalised by various groups. One theory51, known as the cascade model, is based on an 
information theoretic approach, suggesting that distinct loci within the frontal lobes – 
corresponding to premotor, caudal prefrontal, and anterior prefrontal sites – select actions 
that are conditioned on layers of context or instruction that stretch further and further back in 
to the past. We know that the premotor cortex is important for conditional action selection, 
such as when deciding to “stop” at a red traffic light and “go” at a green one.  The theory 
suggests that caudal PFC activity (e.g. in BOLD) indexes the additional processing cost that is 
incurred when the action selection is further contingent on a contextual cue. For example, if 
there is a sign indicating that the traffic lights are out of order (e.g. because the road is being 
mended) the habitual response selection mechanism is overridden by an additional PFC signal 
that incorporates the context (traffic lights inoperational) into the decision.  This is consistent 
with a long literature suggesting a key role for the PFC in suppressing a prepotent response in 
the service of controlled action selection. However, yet more anterior regions are required to 
incorporate decision-relevant information that may have been presented yet further in the 
past.  For example, imagine that on an earlier encounter with a construction worker on the 
roadmending site had indicated that irrespective of what the “out of order” sign said, the traffic 
lights should be respected.  This further information would need to be folded into the decision, 
even if it were received a considerable length of time ago.  The most anterior regions of the 
PFC are required to incorporate this information into the decision. The cascade model of PFC 
function is supported by evidence from neuroimaging and lesion studies in which successive 
layers of instruction are provided in time that dictate the response required to a coloured cue, 
in a manner very similar to the traffic light example. 
 

                                                      
51 Koechlin, E., Ody, C., and Kouneiher, F. (2003). The architecture of cognitive control in the human prefrontal 
cortex. Science 302, 1181-1185, Koechlin, E., and Summerfield, C. (2007). An information theoretical approach 
to prefrontal executive function. Trends Cogn Sci 11, 229-235. 
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It may be, thus, that whilst the parietal cortex and premotor zones engage in computations 
that are reasonably approximated by a vanilla RNN, a different mechanism is needed to 
account for integration of information over longer timescales, such as occurs in the primate 
PFC.  What sort of computational mechanism might allow long-term, time-dependent action 
selection without incurring the computational cost of training an RNN?  One class of solution 
involves the proposal that decision-relevant cues, rather than being persistently maintained by 
tonic activity (as in classic WM studies), causes a fast, temporary reconfiguration of synapses 
in higher cortical regions, that “gates” the information into working memory without requiring 
the maintenance of a prolonged activity state.  Various proposals of this nature have been 
made, and the slide above illustrates one of the more successful. In the PBWM model proposed 
by Frank and colleagues52, action selection requires the dynamic interaction between PFC and 
basal ganglia.  When information is throughput from striatum to PFC, it engenders a fast plastic 
change at PFC synapses, which allows information to be gated temporarily into working 
memory. Note that here the claim is that working memory depends on synaptic change (e.g. a 
rapid update of the weights) rather than a persistent activity state.  Subsequent cues (e.g. a 
contextual probe or “go” signal can open the gates, allowing the memory trace to re-enter the 
activation dynamics and go on to guide action selection.  Frank and colleagues have shown 
how the PBWM model can explain how humans perform a contextual action selection task 
known as the AX-CPT, in which participants view a stream of numbers and letter and respond 
(or not) according to a complex rule depending on the stimulation history.  In the AX-CPT, one 
of two conditional responses (e.g.  respond to X after A but not B, or respond to Y after B but 
not A) is made according to whether the last number shown was a 1 or a 2, requiring 
participants to simultaneously maintain information in an “outer loop” (which was the last 
number) and an “inner loop” (was the last letter an A or a B).  According to the PBWM model, 

                                                      
52 Frank, M.J., Loughry, B., and O'Reilly, R.C. (2001). Interactions between frontal cortex and basal ganglia in 
working memory: a computational model. Cogn Affect Behav Neurosci 1, 137-160, Hazy, T.E., Frank, M.J., and 
O'Reilly, R.C. (2006). Banishing the homunculus: making working memory work. Neuroscience 139, 105-118. 
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each a number is gated into working memory and then retrieved only when required, i.e. to 
determine whether a response should be made to an X following an A. 
 

 
 
The idea that working memory states may be mediated by fast synaptic plasticity is gaining 
traction in neuroscience. For example, this review article53 offers an explanation for a range of 
past findings in nonhuman primate data that support this model. For example, the previously-
described tonic firing in PFC during the delay period may be more related to future action 
selection than to maintenance, as it “ramps up” towards the eventual occurrence of the probe.  
Similarly, the presence of an irrelevant distracter stimulus occurring during the delay period 
induces only a momentary biasing of the single-cell responses, before they revert to coding 
the maintained stimulus, inconsistent with recurrent models of integration that rely on 
attractor dynamics, such the Wang model.  
 
The authors also describe a new prediction: that random “pulses” of information passed 
through the system during the delay period should elicit the “activity-silent” states that are 
present in working memory, because information will flow through the reconfigured synapses 
and momentary transform the silent state in an active one. 
 

                                                      
53 Stokes, M.G. (2015). 'Activity-silent' working memory in prefrontal cortex: a dynamic coding framework. 
Trends Cogn Sci 19, 394-405. 
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Consistent with this prediction, Wolff and colleagues54 used multivariate methods to decode 
the contents (i.e. a grating) from EEG signals during the delay period of a retrocued working 
memory task. The decoded signal was strong following grating onset but died away across the 
retention interval.  However, the sudden onset of a task-irrelevant (‘pinging’) stimulus that 
elicited a strong phase-locked signal (concentric rings) allowed the cued (but not uncued) 
grating to be momentarily decoded, as if the activity-silent state were momentarily 
reactivated.  Similar results are obtained when the brain is “pinged” invasively using 
transcranial magnetic stimulation (TMS). 
 

5.3.  Long short-term memory networks (LSTMs) 
 
 
 
 

                                                      
54 Wolff, M.J., Jochim, J., Akyurek, E.G., and Stokes, M.G. (2017). Dynamic hidden states underlying working-
memory-guided behavior. Nat Neurosci 20, 864-871. 
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Concurrently with this emerging view in neuroscience, a new neural network architecture has 
come to the fore that directly embodies the idea that information is “gated” into working 
memory in an activity-silent fashion.  This architecture, first described by Jurgen Schmidthuber 
in the late 1990s, is known as a “long short-term memory network” or LSTM55.  The 
architecture is a little complex, but it is a straightforward adaptation of the vanilla RNN 
network,  but including new trainable weights that determine how information is gated into 
and out of a short term store, as well as which information in the store is overridden or 
forgotten. 

                                                      
55 http://www.bioinf.jku.at/publications/older/2604.pdf 



November 2018 115 

 
 
A comprehensive description of how an LSTM network functions is beyond the scope of this 
course, but there are numerous online resources providing a detailed explanation of its inner 
workings.  Broadly, active information in the hidden layer flows through time as in a standard 
RNN, with the state on the previous timestep influencing that on the current timestep.  
However, there are now several interim states. Firstly, one set of trainable weights 𝑊𝑓 

determines which information is forgotten (or overwritten) in the hidden state. Other weights 
identify candidate sections of the activity-silent state to be reincorporated into the active state 
and (vice versa) determine what fraction of that information is reincorporated into the ongoing 
activity.  Broadly, the LSTM learns to perform a gating function not entirely dissimilar to that 
proposed by theories of PFC function, such as the PBWM model. 
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LSTMs are even more powerful than RNNs and are now the tool of choice for researchers 
working with complex time-varying stimuli, such as natural language. One interesting use of 
these models has been in image captioning.  Rather than simply being trained to predict a class 
label associated with an image, the network is trained (with supervision) to produce a sentence 
describing what is present in the picture. Some examples are shown above.   
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It’s interesting to compare the overall architecture of these image captioning models with our 
global understanding of how brain function is organised in the neocortex.  For example, many 
neural network models incorporate a CNN on the front end (to disentangle the image pixels 
into sensible representations), whose output is then passed into various LSTM layers to be 
combined with a sentence in natural language.  Compare with our understanding of how the 
brain deals with images (in the ventral stream), with information then throughput to the 
prefrontal cortex (dealing with, for example, speech comprehension/production).  This is what 
I meant when I claimed that it is researchers in AI/ML that are formulating (and implementing) 
general theories of brain function, i.e. starting to think about how to wire up all the various 
computational components required to build a brain that produces intelligent behaviour. 
 

5.4. The Differentiable Neural Computer 
  
 

 
 
However, of course, we know that the PFC (and parietal cortex) do much more than working 
memory maintenance.  For example, the PFC seems to be instrumental for planning and 
reasoning in complex domains.  Without your PFC, you are likely to be impaired at planning a 
new route through a complex environment such as the London Tube system – and much more 
at planning a route through a less familiar environment (such as the Shanghai Metro system). 
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It’s interesting that this class of problem involves precisely the sort of means-end reasoning 
the symbolic AI approaches were designed to solve. However, recall that the limitation of these 
systems is that researchers had to “build in” the reasoning policies required to solve the 
problem – in other words, the system did not learn to reason, they reasoned according to a 
system that was handcrafted by the researcher. This limited the flexibility of the systems to 
cases where the symbols were uniquely specified by the experimenter (and not learned from 
the environment). 
 
However, symbolic systems had an interesting feature, in that the computational operations 
were separated from the contents over which they operated. Thus, a reasoning system 
operates according to a set of (pre-specified) logical rules; the researcher can choose to input 
any set of relevant inputs. Thus, in a sense, these systems separated computation (the 
operations of the processor) from memory (the inputs on which computation operated). This 
is also a hallmark of most modern desktop computers, where the processor (CPU) and the 
memory (e.g hard disk) are distinct computational components.  In neural networks, by 
contrast, memory and computation are the same thing. The computations are determined by 
the values of the network weights, which are the memories that the network retains. 
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So can one build a neural network which embodies the best of both worlds – in which reasoning 
policies are learned by experience (i.e. via “end-to-end” training, for example with gradient 
descent) but there is a separate memory store which codes the contents over which planning 
or reasoning policies operate? In 2016, Graves and colleagues56 described one such 
architecture, which they called the “differentiable neural computer” or DNC.  Its basic 
architecture is shown on the slide above.  At the heart of the network is an RNN that acts as a 
controller. However, rather than acting to open or close gates in working memory, it acts to 
write information to and read it from a content-addressable store, like a long-term memory 
system. 
 

                                                      
56 Graves, A., Wayne, G., Reynolds, M., Harley, T., Danihelka, I., Grabska-Barwinska, A., Colmenarejo, S.G., 
Grefenstette, E., Ramalho, T., Agapiou, J., et al. (2016). Hybrid computing using a neural network with dynamic 
external memory. Nature 538, 471-476. 
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Here’s an example of the sort of task the DNC was asked to solve. It’s the type of supervised 
learning problem that might typically be tackled with an RNN or LSTM, but as we shall see, 
these simpler architectures perform more poorly on the tasks employed.  The network receives 
a long stream of character triplets that denote the structure of a graph, followed by a query 
and two triplets indicating a start and goal location in the graph. For example, it’s as if you were 
asked to navigate from “HGH station” to “YUS station” in an alien subway network.  The 
network is trained (with supervision) to output the shortest path from HGH to YUS as a stream 
of intervening nodes.  This doesn’t sound like a very hard problem, until you realise that the 
researchers input a completely different graph on every training step, so that the network 
wasn’t just learning a fixed policy (like a set of principles for navigating the Tube) but a general 
policy for finding the shortest path for a graph with any topographic organisation.  Training the 
network to solve this is hard, but the researchers succeeded, in part by using a “curriculum” 
that started with smaller, simpler graphs that gradually increased in complexity. 
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In a nice parallel to the earlier GOFAI work, the authors also trained the network to solve a 
version of SHRDLU, the blocks world problem first used by Terry Winograd.  The network was 
able to solve complex reasoning problems with stacks of blocks, but rather than using a 
handcrafted policy, it learned to reason about the blocks entirely via supervised learning, 
solving complex problems related to the Tower of Hanoi task requiring up to 10 planning steps. 
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It remains unclear whether the DNC is a plausible model for neurobiology at all, and if it is, 
whether it more closely resembles the PFC or the hippocampus. Other large-scale models that 
incorporate a content-addressable memory are being developed – these are sometimes 
referred to as “world models”. 
 
 

5.5. The problem of continual learning 
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LSTMs and the DNC are candidate solutions to a critical problem: how to bring information that 
may have been acquired in the potentially distant past to bear upon a decision. These classes 
of network solve this problem by using putative storage mechanisms – underpinned by either 
fast gating mechanisms, or a content-addressable memory – to maintain information about 
past states in a way that is protected from interference by current computation.  Both classes 
of model draw in some way on our understanding of the storage mechanisms in human 
memory, and in particular on new research into the neurobiology of working memory in the 
PFC and/or hippocampus. 
 
However, a distinct but related problem is how to learn over multiple timescales. Animals begin 
to learn when they are born and are able to continue to acquire new information well into 
adulthood and old age. This is extremely important, as it allows agents with long lifespans to 
acquire a rich knowledge of their environment – the “wisdom of the elders”.   
 
Thus far in this course, we have considered a number of applications for which machine 
learning systems offer good (or even superhuman) performance, such as image classification. 
But here instead we are going to focus on an important limitation of current ML systems. 
Currently, the problem of how to learn over the lifespan is unsolved in AI research, but it is 
becoming increasingly clear that the organisation of modular memory systems, and in 
particular the hippocampus, may play a critical role in permitting this “lifelong” or “continual” 
learning. 
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To illustrate the problem of “continual” learning in a simple setting57, imagine you are a 
musician who is learning to play both the cello and the violin. You might practice the cello in 
the morning, and the piano in the afternoon.  Importantly, your afternoon practice session 
does not erase the memory of everything that you’ve learned in the morning! When you wake 
up the next morning, your performance should be incrementally better on both tasks – so that 
after a lifetime of practice, you might become virtuoso on both instruments.  As we shall see, 
this is not the case for current ML systems, in particular feedforward networks that are trained 
slowly with gradient descent alone. 
 

                                                      
57 The most useful paper for all of what follows: Why there are complementary learning systems in the 
hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and 
memory. McClelland JL, McNaughton BL, O'Reilly RC. Psychol Rev. 1995 Jul;102(3):419-57. See also this more 
recent update: Complementary learning systems. O'Reilly RC, Bhattacharyya R, Howard MD, Ketz N. Cogn Sci. 
2014 Aug;38(6):1229-48. 
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So how can we think about the cello/piano problem from perspective of a feedforward 
network? Well what we want is one network that can learn two functions: 𝑦1 = 𝑓(𝑥, 𝑐1) and 
𝑦2 = 𝑓(𝑥, 𝑐2) where 𝑐1 and 𝑐2 are different tasks that may be performed in distinct contexts 
(i.e. learn cello, learn piano).  In the case of supervised learning, we can think of the two 
functions as offering two different discriminative functions for classifying the same data 𝑥 
(although a comparable problem arises when learning two discriminant functions for data 
drawn from different distributions). 
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We have learned that neural networks are powerful function approximators. As long as the 
network has sufficient training capacity, why should this situation present a problem? 
 
Recall that the rate at which optimisation proceeds is governed by the learning rate 𝛼, which 
dictates the step size by which the weights are updated according to the gradient of the loss.  
As we have seen, values of alpha that are too large and likely to lead to failures of convergence, 
and so small learning rates are often required.  The incremental learning which is the hallmark 
of deep networks has both costs and benefits. 
 

 
 
The major benefit is that slow learning allows the network to form representations that depend 
on a larger sample of the training distribution, rather than (for example) just a single item. To 
understand why this is the case, consider what happens if the learning rate is 1 (apart from the 
fact that your network fails to converge). With 𝛼 = 1, the network fully updates the weights 
towards the target after every single sample, and it never takes more than a single item into 
account when learning – on the next trial, it simply forgets about all previous items and learns 
according to the very latest feedback it receives. So in this setting, the network cannot learn 
to aggregate over the information that may be present in multiple sequential samples. By 
contrast, low learning rates allow the network to form representations that depend on multiple 
training examples and the network can thus “abstract” over those training examples to form 
rich conceptual representations. Thus, the network can learn that the concept of “cat” is 
associated with cats of different breeds and sizes seen from different orientations, or with 
inputs across multiple modalities (miaow). By forming representations that depend on the 
overall statistics of the training examples, rather than a specific instance, the network is able 
to generalise to novel examples with comparable statistics.  
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However, the cost of using exclusively a slow learning system is that it is very hard to learn 
continually, i.e. to perform one task for a prolonged period and then switch to perform 
another.  Rather, standard neural networks suffer from “catastrophic interference”. Consider 
a network that performs task A (e.g. play the cello) for a prolonged period and learns it to 
convergence. Subsequently, the network encounters a new task B (e.g. play the piano). The 
network can also learn this task to convergence. However, when returning to task A, the new 
learning (B) has “overwritten” knowledge of how to perform task A, and so the network has to 
relearn from scratch. Clearly, this is very different from the behaviour of (say) a human 
musician. 
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To understand why this happens, consider what changes occur in the weights.  For illustration, 
the settings of just 2 weights are plotted on the slide; but the same principle holds for the 
higher-dimensional setting of a standard neural network. The weights are initialised at random 
and during optimisation for task A, they gradually shift to one of potentially many global 
minima that allow task A to be performed effectively. Following the introduction of a new 
objective B, the weights shift away from this point and towards a minimum that allows effective 
performance of task B. Thus, following the reintroduction of task A, they need to shift back 
again. All this happens slowly an inefficiently, because of the single (low) learning rate that 
determines the speed of learning. 
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Of course, for humans a very different pattern is typically observed, whereby learning task B 
might cause a small amount of interference. However, in general, for human relearning on task 
A will start from a higher baseline and/or proceed much faster than initial learning. 
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This contention has empirical support. For example, in this classic study by McCloskey & 
Cohen58, human participants first learned a list of paired associates (A-B list), and then learned 
a new set of associates for A (A-C list), whilst being constantly probed for recollection of the A-
B list without any feedback. Performance on the A-B list was impaired by A-C learning, but not 
nearly as dramatically as in neural network simulations, where A-B learning rapidly fell to the 
floor as the network started to learn A-C. 
 
 

 
 
You might be thinking: well how do we know that the network actually has enough capacity to 
learn both tasks? Perhaps it only has sufficient memory to learn task A or task B, but not both? 
 
For most settings, this is not the case. Indeed, if the two tasks are trained *together*, so that 
they resemble a single “macro-task”, then the network is perfectly able to learn both A and B 
together.  In other words, the problem of continual learning occurs in a “blocked” setting, 
where each task occurs over a prolonged period before switching to the next.  This tends to be 
the case in natural environments. However, for neural networks, the problem is mitigated in 
“interleaved” environments in which all training samples are randomly intermixed.  This is 
because without further architectural constraints, the network does not have a mechanism for 
partitioning knowledge in a way that prevents mutual interference among tasks. In fact, it 
doesn’t really know what a “task” is at all. Rather, it just learns a conditional mapping from 
inputs to outputs; it treats all inputs alike as if they were part of a single, global task. 
 
 

                                                      
58 McCloskey M & Cohen NJ (1989). Catastophic Interference in Connectionist Networks: The Sequential 
Learning Problem. Journal of Learning & Motivation, 24:109-165. 
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One reason why “interleaved” training tends to be successful is that neural networks tend to 
be overparameterised. That ensures that there exist multiple possible weight settings (minima) 
that allow task A and B to be solved, including settings that allows both A and B to be solved at 
the same time. So when training on A and B together, the network gradually converges to one 
of these “joint” solutions. Unfortunately, there is no guarantee that when training on A the 
network will also find a solution that allows B to be solved, and so during a “blocked” training 
setting the network oscillates back and forth between solutions that allow only one task to be 
solved at a time.  This is why catastrophic interference tends to occur. 
 
Thus one could think of the problem of building an agent that is able to perform any task, just 
like a human, as identifying a training regime that ensures that the network converges to just 
the right global minimum, where all relevant tasks can be solved! Much contemporary machine 
learning research implicitly buys into this view.  However, this is clearly something that can be 
discussed. For example, an alternative is that humans may have “metalearning” mechanisms 
that allow them to “learn how to learn”, so that they can rapidly adapt to any new task, without 
there being a single fixed global minimum that is sufficient for effective performance across an 
environment constituted by a distribution of tasks59.  
  

                                                      
59 This is an extremely promising approach which can be read about here: Prefrontal cortex as a meta-
reinforcement learning system. Wang JX, Kurth-Nelson Z, Kumaran D, Tirumala D, Soyer H, Leibo JZ, Hassabis 
D, Botvinick M. Nat Neurosci. 2018 Jun;21(6):860-868. 
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6.  Complementary Learning Systems Theory  
 

 6.1. Dual-process memory models 
 
 

 
So how is it that humans are able to avoid catastrophic interference when neural networks are 
not?  One very critical aspect of human memory is the ability to vividly recall past experiences 
after only a single exposure, such as when you remember your experiences on a past holiday.  
In our taxonomy of human memory systems, this is known as episodic memory. 
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Classic theories in neuroscience and psychology ascribe this ability to the functioning of the 
hippocampus.  Patients with damage to the hippocampus fail to acquire new information after 
a single exposure (known to AI researchers as “one-shot” learning) but are still able to acquire 
new skills gradually. For example, HM could learn new motor skills60, and exhibit perceptual 
and semantic priming, but was unable to recall events or experiences that occurred after 
surgical removal of his medial temporal lobes (including the hippocampus). 
 

                                                      
60 First described by Milner: Milner, B. (1962). Les troubles de  la memoire accompagnant des lesions 
hippocampiques bilaterales. In Psychologie de I'hippocampe. Paris: Centre  National de la Recherche  
Scientifique.  If you want a version in English, try this more recent paper: Intact acquisition and long-term 
retention of mirror-tracing skill in Alzheimer's disease and in global amnesia. Gabrieli JD, Corkin S, Mickel SF, 
Growdon JH. Behav Neurosci. 1993 Dec;107(6):899-910. 
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This functional distinction between the memory systems in hippocampus and cortex has an 
established tradition in psychology and neuroscience, and indeed relates back to the notion of 
“implicit” and “explicit” memory that was first proposed at the beginning of the cognitive 
revolution in the 1970s. More recently, “dual-process” memory models have argued for a 
distinction between two classes of retrieval event: “recollection” (putatively hippocampal-
dependent) and “familiarity” (putatively cortical)61.  The key proposal is that recollection and 
familiarity are dissociable retrieval processes (the counterproposal, most often associated with 
Larry Squire, is that familiarity is a weak form of recollection).  The evidence for the former 
theory is that it seems to be possible to have a strong sense of familiarity with a memory item 
without recollecting the relevant contextual information – i.e. where it was experienced and 
other associated detail.  Anecdotal evidence for this comes from the “butcher on the bus” 
phenomenon, whereby people sometimes report meeting an acquaintance whom they 
recognise strongly without being able to place them, i.e. to remember their name or the 
context in which they are known.  Lab-based experimental evidence, based on subjective 
reports in the “remember/know” paradigm, supports the idea that memory items can be highly 
familiar but retrieved without associated contextual information (i.e. not recollected).   
 
Further supporting the dissociation between familiarity and recollection, amnesic patients 
such as HM often show evidence of familiarity without conscious recollection. For example, in 
the famous anecdote of “Claparède’s drawing pin”, the malicious Swiss neurologist62 shook the 
hands of amnesic patients with a drawing pin concealed in their palm, leading the patient to 
withdraw the hand after receiving a nasty prick. The patients subsequently exhibited no 
recollection of this event but would refuse to shake Claparède’s hand any more. 

                                                      
61 Try this: Yonelinas, AP (2002). The Nature of Recollection and Familiarity: A Review of 30 Years of Research. 
Journal of Memory and Language 46(3):441-517 
62 https://en.wikipedia.org/wiki/%C3%89douard_Clapar%C3%A8de 
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Indeed, dual-process memory models are supported by dissociations in the behaviour 
exhibited by patients with damage to hippocampus and nearby neocortical regions, such as 
the perirhinal cortex.  After having learned a list of words, patients are shown both old words 
and new words (lures) and asked to subjectively report whether they “remember” or “know” 
the word. Hippocampal patients tend to exhibit deficits of recollection (remembering) with 
spared familiarity (knowing) whereas the reverse is true for patients with perirhinal damage. 
By contrast, patients with medial temporal lobe (MTL) damage encompassing both regions are 
impaired on both recollection and familiarity63. 
 
 

                                                      
63 Yonelinas AP, Aly M, Wang WC, Koen JD. Recollection and familiarity: examining controversial assumptions 
and new directions. Hippocampus. 2010 Nov;20(11):1178-94. 
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There is also converging evidence from fMRI studies for this “remember” vs. “know” distinction 
in the hippocampus/neocortex.  For example, in this metanalytic study64, BOLD signals were 
consistently higher in the hippocampus when participants reported “remembering” an item 
(i.e. recollection) but higher in the perirhinal cortex when they reported “knowing” an item 
(i.e. familiarity). 
 

6.1. The hippocampus as a parametric storage device 
 
 
 

                                                      
64 Wais PE. FMRI signals associated with memory strength in the medial temporal lobes: a meta-analysis. 
Neuropsychologia. 2008 Dec;46(14):3185-96 
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This distinction between cortex and hippocampus motivates a classic account, known as 
complementary learning systems (CLS) theory.  This theory argues how the hippocampus and 
cortex have evolved to work together to prevent catastrophic interference in biological 
systems. The theory argues that the cortex plays a role similar to that of a standard neural 
network, in that it learns slowly and incrementally from new sensory data, allowing a general 
sense of “familiarity” with objects or categories to be obtained from diverse experience. The 
hippocampus and other MTL structures, by contrast, learn very rapidly from new information, 
acquiring new episodic memories in a “one-shot” fashion, or after a single exposure, and 
supporting a distinct class of memory storage that supports recollection. 
 
According to CLS, episodic memories are stored in a way that allows them to be recollected or 
“replayed” at a later time, even during periods when other learning is taking place, so that they 
too have the opportunity to be encoded slowly in the cortex. Thus, the recollection of episodic 
experiences provides an offline “interleaving” whereby old memories and new experiences are 
jointly encoded in the neocortex. This allows the network to find a minimum that 
simultaneously satisfies the demands of current and past tasks. 
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The complementary learning systems account is an important theoretical perspective and so 
we will take some time to unpack it in detail. Broadly, in contemporary versions of the theory, 
there are 4 major components: Hebbian autoencoding, pattern separation, experience-
dependent replay, and neocortical consolidation. 
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We will consider unsupervised methods in much more detail in the next lecture, but for our 
current purposes, it suffices to understand how information can be stored in a network in a 
fault-tolerant fashion according to Hebbian principles. Recall the basis for Hebbian learning: 
neurons that are activated by a common input have their mutual connections strengthened, 
or as it is often said, “neurons that fire together wire together”. 
 
To understand that basic principle of autoassociation65, consider a population of 𝑛 neurons 
that are fully connected to each other (and, for convenience, themselves) by a weight matrix 
𝑊 that will be of size 𝑛 × 𝑛.  When a common input arrives to neurons 𝑥𝑖 and 𝑥𝑗 these neurons 

become more strongly connected through increased synaptic strength. This can be 
implemented by updating weight 𝑊𝑖𝑗 in proportion to 𝑥𝑖 ∙ 𝑥𝑗. More generally, for any input 𝑥 

we can train 𝑊 =  𝑊 + (𝑥 ∙ 𝑥𝑇) ∙ 𝛼 where 𝛼 is the learning rate, and 𝑥 ∙ 𝑥𝑇 is the outer 
product of 𝑥, i.e. itself multiplied by its transpose (hence “autoassociation”).  Critically, a 
network of this form can be trained to encode multiple distinct inputs in such a form that when 
probed with a degraded version of 𝑥 (for example 𝑥′) by multiplying that degraded input by 
the weights 𝑥′ ∙ 𝑊, then a vector is elicited that will reproduce the original input with a 
reasonable level of fault tolerance. An autoassociative network of this form can thus be 
thought of as a parametric storage mechanism, i.e. an encoding model where the number of 
units (i.e. neurons) does not have to grow with each new memory that is formed. 
 
 
 
 

 
 

                                                      
65 This book is generally a bit technical but the chapter on autoassociation is relatively clear: 
https://page.mi.fu-berlin.de/rojas/neural/chapter/K12.pdf 
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So broadly, we can think of the MTL circuitry (including the hippocampus) as receiving input 
from a cortical neural network (for example, the inputs 𝑥 could be from a hidden layer of that 
network) and acting as an autoassociative storage mechanism. Random activity passing 
through the network at a later date will allow these inputs to be retrieved. 
 
 
 
 

 
 
 
As we shall see later in the course, the storage capacity of autoencoding methods (including 
the Hebbian autoassociation described here) can be increased when the inputs are sparse. This 
means, for example, that inputs to the storage system undergo a preprocessing step in which 
the stronger inputs are strengthened and the weaker inputs are weakened. This reduces the 
correlation among inputs and makes them more distinctive. There is good evidence that the 
dentate gyrus (DG), through which inputs pass en route from the cortex to the hippocampus, 
performs a computational set that resembles pattern separation, making the sensory inputs 
sparser and less overlapping66. This might happen for example via a winner-takes-all inhibition 
mechanism that places inputs in mutual competition and maintains only the activity in the 
most active units.  Recordings from the DG seem to be particularly sparse – in other words, 
only a very small fraction of neurons is activated by a single synapse. In general, the sparsity of 
MTL units (as described in classic papers showing the high degree of neural selectivity in this 
region) may be a computational step which helps increase storage capacity. 
 

6.2. Experience-dependent replay and consolidation 
 

                                                      
66 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2976779/ 
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An example of the sort of representation that is observed in the hippocampus (at least in 
rodents) is a place cell. Place cells fire when the animal occupies a specific location in an 
environment such as a testing box or running track, but are less sensitive to the head direction 
or other corollary sensory information67.  
 

                                                      
67 Hartley T, Lever C, Burgess N, O'Keefe J. Space in the brain: how the hippocampal formation supports spatial 
cognition. Philos Trans R Soc Lond B Biol Sci. 2013 Dec 23;369(1635):20120510. 
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The key proposal of CLS is that information retrieved from hippocampal storage system can be 
“replayed” in a fashion that interleaves past experience with ongoing sensory inputs68, to allow 
the network to break the temporal autocorrelation that is inevitable in natural environments.  
There is now excellent evidence for this sort of “replay” mechanism in the hippocampus (in 
fact, replay also occurs elsewhere in the brain, such as the PFC, but we will focus on the 
hippocampus here).  During sleep or quiet resting, hippocampal cells exhibit fast bursts of 
activity known as “sharp wave ripples”, during which place cells become rapidly active in 
sequence. Most interestingly, the sequence of activation tends to restate that which was 
experienced during recent activity, only an order of magnitude faster. Thus, if an animal runs 
repeatedly on a linear track whose locations are encoded in place cells numbered 1,2,3..𝑛 then 
during these “replay” events the cells will reactivate in that specific order, even when the rat 
has been removed from the track.  In other words, it is as if the animal is “replaying” or 
“reimagining” past experiences in a structured fashion, allowing the interleaving of past 
experiences with current sensory data. CLS argues that this mechanism is critical for reducing 
catastrophic interference69. 
 

                                                      
68 Lots of good reviews on this topic. Ólafsdóttir HF, Bush D, Barry C. The Role of Hippocampal Replay in 
Memory and Planning. Curr Biol. 2018 Jan 8;28(1):R37-R50. doi: 10.1016/j.cub.2017.10.073. Foster DJ. 
Replay Comes of Age. Annu Rev Neurosci. 2017 Jul 25;40:581-602. Carr MF, Jadhav SP, Frank LM. 
Hippocampal replay in the awake state: a potential substrate for memory consolidation and retrieval. Carr MF, 
Jadhav SP, Frank LM. 
69 Kumaran D, Hassabis D, McClelland JL. 
What Learning Systems do Intelligent Agents Need? Complementary Learning Systems Theory Updated. 
Trends Cogn Sci. 2016 Jul;20(7):512-534. 
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Replay can occur during ongoing behaviour, or at a subsequent time when the animal has been 
removed from the testing environment. Whist it is in the testing environment, the replay can 
be either local or remote; in other words, the animal can use replay to explore the transition 
structure of the environment, and to learn more about previously experienced trajectories, in 
order to facilitate future behaviour.  In fact, replay may have a role which goes beyond the 
simple interleaving of past and future experience, as we shall see below. 
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Information that is retrieved during replay is passed back to the cortex via the entrorhinal 
cortex, allowing memories to consolidated in cortical circuits. This completes the cortico-
hippocampal-neocortical loop, so that information encoded in the cortex contains a mixture 
of experiences. 
 
 

 
 
CLS thus explains why hippocampal lesions lead both to anterograde amnesia (because new 
information cannot be encoded in a one-shot fashion) and a gradient of retrograde amnesia, 
whereby information that was learned immediately prior to the lesion tends to be most 
vulnerable to hippocampal damage. For example, in this study by Zola-Morgan & Squire70, 
relative to control monkeys there was no difference in retrieval of information that was learned 
>7 weeks prior to a hippocampal lesion, whereas information that was learned just a few weeks 
previously was impaired.  According to CLS, this is because the longer-lag information had been 
consolidated into cortical circuits, where it was protected from interference by the lesion. A 
neural network model that involved a consolidation step was able to recreate this pattern of 
data. 
 

                                                      
70 Zola-Morgan SM, Squire LR. The primate hippocampal formation: evidence for a time-limited role in memory 
storage. Science. 1990 Oct 12;250(4978):288-90. See 1995 CLS paper for neural network comparison. 
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However, it is worth noting that CLS predicts that consolidation should be slow, occurring as 
information is gradually replayed in the hippocampus and re-encoded in the neocortex. 
However, there is also evidence that consolidation can occur remarkably rapidly. In this classic 
task by Tse and colleagues71, rats learned to forage for food in an open area. Food locations 
were cued by an odour signal that was given at the start of the trial.  If a hippocampal lesion 
was made at before training occurred, then animals could not acquire the paired associations 
(top right).  Subsequently, however the experimenters trained the animals normally, and then 
introduced a single trial of a new paired association, in which two new odours were paired with 
locations near to previously trained food wells. The animals were able to learn this association 
in a single shot, as demonstrated by an unrewarded probe 24h later.  Critically, however, this 
memory survived a subsequent hippocampal lesion. This suggests that even if the 
hippocampus is required for paired associate acquisition, it can be consolidated to the 
neocortex extremely rapidly – even after a single learning event.  This presents a challenge to 
the view proposed by CLS, which argues that hippocampal learning is fast and neocortical 
consolidation is much slower. 
 

                                                      
71 Schemas and memory consolidation. Tse D, Langston RF, Kakeyama M, Bethus I, Spooner PA, Wood ER, 
Witter MP, Morris RG. Science. 2007 Apr 6;316(5821):76-82. 
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In a follow-up study, the same authors72 measured early immediate gene expression – a 
measure of protein expression that is linked to synapse formation – in the hippocampus and 
cortex during the same paradigm. They found that the new paired-associate learning was 
linked to gene expression in the cortex (including prelimbic regions of the medial PFC) but not 
the CA1 region of the hippocampus, providing support for the view that the effect is mediated 
by cortical learning mechanisms.  So, a complete biological account of knowledge acquisition 
needs to be able to explain how information can be consolidated rapidly to the neocortex, 
potentially requiring additional mechanisms to those proposed by CLS. 
 
 

6.4. Function approximation for RL: the Deep Q-network 
 
 

                                                      
72 Tse D, Takeuchi T, Kakeyama M, Kajii Y, Okuno H, Tohyama C, Bito H, Morris RG. Schema-dependent gene 
activation and memory encoding in neocortex. Science. 2011 Aug 12;333(6044):891-5. 
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CLS is an interesting theory of how learning occurs in the neocortex and hippocampus of 
biological agents. But can it be practically applied to improve performance in machine learning 
and AI research?  The answer is yes, as we shall see. But to introduce how, we need to return 
to lecture 2, where we discussed model-free RL methods that allowed an agent to learn, in 
tabular form, the optimal value of states/actions in an MDP, as given by the Bellman equation.  
One of the limitations of the type of approach discussed is that the models were 
“nonparametric”, in that the model size is obliged to grow as the number of states/action pairs 
in the world.  Ideally, we would like to use a parametric model to learn by reinforcement. How 
can we do that? 
 
Well, in principle there is nothing to stop you from using a functional approximator, such as a 
neural network, to learn the optimal Q values in an RL task. All you would need to do is optimise 
the network to minimise the prediction error associated with each state; when the prediction 
error is zero, the network has converged and learned the optimal Q-values.  This sounds simple, 
but in fact it’s very tricky – because typically the sorts of environments where one might wish 
to use an RL model (e.g. the grid world discussed in lecture 2) exhibit strong patterns of 
temporal autocorrelation – in other words the state 𝑠𝑡 is physically very similar to the state 
𝑠𝑡+1, creating a situation similar to the “blocking” of tasks that provokes catastrophic 
interference in the supervised setting. 
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However, replay offers a potential solution to this problem, embodied in the “Deep Q 
Network” (DQN). Described in a paper in 201573, DQN successfully learned to play more than 
30 Atari 2600 video games at near- or super-human levels. Architecturally, DQN is a deep 
convolutional neural network that learns the optimal Q function as described above but avoids 
instability by storing and periodically replaying memories of past events alongside new inputs. 
This allows it to break the correlation between successive video frames in the Atari 
environment and to learn a function that maps pixel inputs onto predicted rewards. However, 
DQN’s storage system is far more primitive than the mammalian hippocampus – it simply saves 
the past million video frames into a large memory buffer, without any compression or other 
preprocessing. 
 

                                                      
73 Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, Graves A, Riedmiller M, Fidjeland AK, 
Ostrovski G, Petersen S, Beattie C, Sadik A, Antonoglou I, King H, Kumaran D, Wierstra D, Legg S, Hassabis D. 
Human-level control through deep reinforcement learning. Nature. 2015 Feb 26;518(7540):529-33. 
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An example of the network playing space invaders is shown here. The network begins with 
chance-level play (as the weights are initialised to random) but gradually learns to perform as 
an expert. In the game breakout (top left), you can see how the state value function grows as 
the network gradually “tunnels” through the wall towards the score-maximising goal of 
trapping the ball above the bricks. 
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DQN replayed events at random, which maximally decorrelated the past and current input to 
circumvent the problem of catastrophic interference.  However, this may not be the most 
efficient strategy. Subjectively, our internal rumination tends to dwell on events that are 
important or salient for future behaviour, such as those that incurred strong positive or 
negative outcomes (PTSD is an example of a disorder in which replay of a salient negative event 
occurs so frequently that it becomes disruptive).  Indeed, in rodents, replay events tend to 
happen preferentially near highly rewarded events, as shown in this paper by Ambrose and 
colleagues74, in which the magnitude of available rewards in a maze was carefully controlled. 
Replay events occurred more frequently at the location of a large reward, and less frequently 
at the location of an absent reward, relative to the control condition (small reward). 
 

 
 
In fact, incorporating a similar “prioritised” replay scheme into a variant of DQN75, such that 
events leading to large prediction errors were more likely to be replayed, substantially 
increased performance relative to DQN versions using only random replay. 
 

                                                      
74 Ambrose RE, Pfeiffer BE, Foster DJ. Reverse Replay of Hippocampal Place Cells Is Uniquely Modulated by 
Changing Reward. Neuron. 2016 Sep 7;91(5):1124-1136. 
75 https://arxiv.org/abs/1511.05952 
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In fact, a recent paper76 offers a more complete account of the constraints under which replay 
should occur to facilitate learning, under the assumption that learning is largely model-free 
(but that simulation can occur offline).  The authors used simulation to identify which patterns 
of replay would maximise the rate of reward learning in simple navigational environments, 
such as linear tracks and mazes in which replay has been most intensively studied. Their work 
shows that many salient features of empirically observed replay in rodents are in fact reward-
maximising strategies. For example, replay can occur forwards (from the current location to 
future states) or backwards (from the current location back to past states). The authors’ 
optimal model suggests that backwards replay is optimal when a reward has just been 
experienced (because it backs up the reward to recent states) whereas forward replay is 
optimal when the goal is more distal (because it maximises the chances of replaying a 
potentially fruitful route to the goal). This is exactly what the is observed in empirical studies, 
for example one by Diba & Buszaki (2007) as shown on the slide. 
 

6.5. Knowledge partitioning and resource allocation problem 

                                                      
76 Mattar MG, Daw ND. Prioritized memory access explains planning and hippocampal replay. Nat Neurosci. 
2018 Nov;21(11):1609-1617. 
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Despite these advances, and despite the evident success of replay both as a strategy for RL in 
dynamic environments and as an explanation for neural data recorded in rodent experiments, 
continual learning remains an unsolved problem in both machine learning and neuroscience. 
For example, in the Atari environment, DQN was able to learn to play multiple games at 
superhuman levels, but only if its memory was “reset” (i.e. the weights were randomly 
reinitialised between games). Of course, this is very different from human play – where the 
same expert can potentially learn to play all of the games using the same model (i.e. brain). 
Until we know how to build brains that can continue to learn in a way that avoids mutual 
interference between past and current knowledge, we won’t be able to build strong AI. 
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Another important caveat is that CLS assumes that human learning benefits most from 
interleaving. This is clearly true in some cases. There are examples from the domains of skill 
learning (e.g. sports), language learning and even more abstract capacities (e.g. mathematical 
ability) that support this notion (for example, a large memory literature has emphasised the 
benefits of spaced over massed practice).  However, it’s not the case that full interleaving is 
always beneficial.  Think about the challenge of learning both French and Spanish – you 
probably don’t want to mix up vocabulary learning from the two domains in the same lesson!   
 
The benefits of blocked rather than interleaved training were demonstrated in this recent 
study by Flesch and colleagues77.  They asked participants to classify a space of naturalistic 
stimuli (trees) into one of two categories on the basis of trial-and-error feedback alone.  
Critically, the classification rule (plant the tree according to its leafiness vs branchiness) was 
varied in two different contexts.  Participants in different groups experienced these contexts 
either in long blocks or randomly intermixed, but during testing (without feedback) all contexts 
were interleaved. Those who had experienced blocked training performed better at 
interleaved testing, even better than those who had experienced exactly the same interleaving 
during training.   
 
The authors then examined the pattern of errors that humans made during the task. They 
found that the benefits of blocked training over interleaved was particularly due to participants 
learning the two orthogonal task boundaries – as if blocked training helped participants 
“factorise” the problem into two distinct tasks. So for humans, in contrast to neural networks, 
learning to segregate information according to context may be beneficial. 
 

                                                      
77 Flesch T, Balaguer J, Dekker R, Nili H, Summerfield C. Comparing continual task learning in minds and 
machines. Proc Natl Acad Sci U S A. 2018 Oct 30;115(44):E10313-E10322. 
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This was supported by a further experiment in which the researchers measured participant’s 
prior understanding of the “tree space” – the way they represented the naturalistic stimuli that 
were generated for the experiment. Those participants that naturally represented the trees as 
being organised according to orthogonal “leafiness” and “branchiness” displayed the most 
benefit from blocked training, as if this training regime reinforced the partitioning of 
knowledge according to context. 
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Other approaches from machine learning attempt to allocate task information to distinct 
synapses, using a technique known as “stabilisation”. In this paper by Kirkpatrick and 
colleagues78, capitalising on overparameterisation, they identify those network weights that 
are most important for a given task, and “freeze” them selectively by slowing down the learning 
rate. This allows the new learning to be allocated in a way that makes it less likely to interfere 
with old knowledge, conferring a substantial protection against catastrophic interference both 
in toy domains and in Atari games. They call this “elastic weight consolidation”. A related 
method, known as “synaptic intelligence” performs similarly79. 
 
 
 

                                                      
78 Kirkpatrick J, Pascanu R, Rabinowitz N, Veness J, Desjardins G, Rusu AA, Milan K, Quan J, Ramalho T, 
Grabska-Barwinska A, Hassabis D, Clopath C, Kumaran D, Hadsell R. Overcoming catastrophic forgetting in 
neural networks. Proc Natl Acad Sci U S A. 2017 Mar 28;114(13):3521-3526. 
79 https://arxiv.org/abs/1703.04200 
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It was recently shown80 that these techniques are particularly effective when combined with 
another method, that randomly gates synapses for each context, ensuring more limited 
overlap between the weights that participate in each task. For example, this might be one 
function of the top-down signals that are observed during task-level control in monkey and 
human neural recordings. These methods, which ensure that knowledge is partitioned, are 
likely to be promising avenues for solving continual learning in the future. 
 
 
 
  

                                                      
80 Masse NY, Grant GD, Freedman DJ. Alleviating catastrophic forgetting using context-dependent gating and 
synaptic stabilization. Proc Natl Acad Sci U S A. 2018 Oct 30;115(44):E10467-E10475. 
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7. Unsupervised and generative models 
 

7.1. Unsupervised learning: knowing that a thing is a thing 
 

 
Thus far in the course, we have considered two canonical machine learning methods: model-
free reinforcement learning and supervised learning.  Both of these frameworks assume that 
information is sent from the world to the agent in two distinct forms: as observations (e.g. 
sensory signals) and as feedback (e.g. reward or teaching signals).  We have seen that model-
free RL methods are limited when the reinforcement provided by the environment is sparse.  
This is often the case: for example, humans engage in complex patterns of behaviour in order 
to achieve a distant goal, without necessarily receiving interim rewards along the way.  
Supervised learning requires an “oracle” or teacher to provide information about the correct 
answer after every decision. In natural environments, this teaching signal may not always be 
available.  



November 2018 158 

 
 
Humans and other animals, thus, can learn even where feedback is limited or absent.  
Developmental psychology illustrates this point in great detail.  In the first year of life, when 
most infants understand only a very limited vocabulary, they nevertheless learn a great deal 
about the world, for example, being able to distinguish between various classes of object.  
There must be a mechanism, thus, by which knowledge is acquired with minimal supervision 
or reinforcement. Whilst it is true that a predisposition towards certain forms of knowledge 
(e.g fear of spiders) may be provided by genetic heritage – as proposed by nativist theories – 
we clearly need another mechanism to account for the power of biological learning. 
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For example, one important source of knowledge that is acquired without feedback or 
reinforcement is about the nature of object. Infants learn from an early age that objects are 
distinct from one another, for example that an object might still be present even when partly 
occluded, that objects are solid and cannot occupy the same space, etc (Elizabeth Spelke’s 
work is instrumental here81). The knowledge that infants acquire about objects goes way 
beyond simply assigning a category label: they understand how objects are composed of 
features, how they relate to one another, and how they are subject to basic laws of physics. 
How do they acquire this knowledge? 
 

                                                      
81 Too many papers to read here, but take a look: Spelke’s work is among the most important in the field 
https://www.harvardlds.org/our-labs/spelke-labspelke-lab-members/elizabeth-spelke/ 
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Recall that in lecture 3 we discussed adversarial neworks, that laid bare the limited object 
understanding displayed by deep neural networks. It’s easy to fool deep networks – although 
they may learn to classify objects accurately on average, it’s possible to identify situations 
where they will make nonsensical categorisation decisions.  Deep neural networks learn how 
a large conditional distribution over image pixels maps onto a class label, but they don’t really 
understand what objects are and how they behave. In part, this might be because neural 
networks typically only receive object information through a single sensory channel (vision), in 
contrast to human infants, who can handle and interact with objects using their behaviour.  
However, there is another machine learning method that offers more promise for teaching 
machines to have greater object understanding. 
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To understand unsupervised methods, we have to take a step back and consider a whole 
different framework for thinking about sensory data and the nature of reality. A long 
philosophical tradition – dating back to the Greeks – sees perception as an “inference” process 
that attempts to reconstruct the true structure of the world from limited and noisy data. In 
psychology, this tradition can be traced back to Helmholtz’s notion of “unconscious inference”, 
and subsequently through the influence of the constructivist movement in visual perception, 
most often associated with figures such as Richard Gregory82.   
 
This tradition considers the world as being best described as a set of unobservable processes 
(or “latent variables”) that give rise to sensory data. The information impinging on our senses 
is thus a partial or noisy reflection of these processes, and the task of perception is to 
reconstruct the true nature of the world from this data.  We can thus think of the world as 
being constituted by a “generative model” that generates sensory data, for example the 
patterns of light incident on the retina.  Perceptual processes have evolved to “invert” that 
generative model, to infer the true causes of sensation.  
 
 
 

                                                      
82 Gregory’s book Eye and Brain is the classic text here. 
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Unsupervised learning methods are a class of machine learning technique that attempt to 
redescribe sensory data in terms of a (smaller) set of latent variables. Unsupervised methods 
are thus intrinsically related to the notion of dimensionality reduction, i.e. that we can take a 
high-dimensional input (such as image pixels depicting an object) and describe it compactly in 
terms of a set of variables (e.g. the shape, colour or size of the object).  Critically, unsupervised 
methods do not make the (potentially artificial) distinction between sensory observations and 
feedback; all inputs are potentially indicative of the structure of the world, irrespective of 
whether they pertain to hedonic experience or not.  This perspective allows us to circumvent 
the challenge of understanding what a “reward” is in the first place in natural environments 
(e.g. is the sight of a chocolate bar a reward? Its taste in the mouth? Or only the calorific benefit 
once it is ingested?).  So unsupervised methods reformat sensory signals in useful ways, rather 
than mapping them onto an explicit label or reward that is given by the world. 
 
The formula on the slide shows the canonical approach taken by unsupervised approaches. A 
data structure 𝐷(𝑥) is decomposed into a set of components 𝜙(𝑥) with each component 𝜙𝑖 
being weighted by a parameter 𝑎𝑖. The components are the latent or generative processes that 
give rise to the data structure. Note that these are always inferred: there is no ground truth 
that says whether they are “right” or “wrong”, and there are infinitely many ways in which the 
data can be decomposed.  How, then do we know which is the best description of the data? 
Well, if our unsupervised model is a computational theory of the brain, then the best 
description is one that accurately captures the coding properties of sensory neurons. In 
machine learning, it’s one that is able to accurately reconstruct sensory data from limited 
inputs using the lowest possible capacity. In other words, unsupervised methods are often 
optimised for efficiency. The idea that a neural information processing system should learn to 
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code as efficiently as possible for sensory data (e.g. using as few neurons as possible) is one 
that dates back to Barlow83. 
 

7.2. Encoding models: Hebbian learning and sparse coding 
 
 

 
 
In lecture 5, we saw that Hebbian learning is a canonical unsupervised learning technique that 
can allow information to be stored efficiently, for example in an autoassociative network.  
Hebbian learning embodies the principle that statistically correlated inputs allow the formation 
of new composite representations.  For example, let’s imagine that inputs 𝑥𝑖 and 𝑥𝑗 correspond 

to the presence of two critical features of an input, such as its shape (square) and colour (red)  
If “square” and “red” repeatedly co-occur, then under Hebb’s rule, their connections to a 
subsequent neuron will be jointly strengthened – as if the network has learned that red and 
square “go together”, i.e. that in the dataset there is such a “thing” as a red square. As we have 
seen, Hebbian learning confers fault tolerance, so that even if one of the inputs is noisy or 
degraded, the input should be reconstructed accurately – for example, allowing for various 
forms of constancy. 

                                                      
83 Barlow H.B. (1961).  Possible principles underlying the transformations  of sensory messages.  Chapter 13.  
In: Sensory Communication,  W.Rosenblith (Ed.), M.I.T. Press, pp. 217-234. 



November 2018 164 

 
 
 
Recall also that when considering feedforward neural networks we mentioned that supervised 
learning implements an online form of multivariate regression, in which the goal is to learn the 
network parameters that map an input 𝑥 onto an output 𝑦 through gradient descent.  By 
analogy, simple unsupervised networks implement a form of principal components analysis 
(PCA), which seeks to find a lower-dimensional representation of the input data that preserves 
the major sources of variation in compact form.  In fact, it can be shown that Hebbian learning 
implements an online version of PCA, also known as Oja’s rule84. 
 
 

                                                      
84 Oja, E (1982). Simplified neuron model as a principal component analyzer. Journal of Mathematical Biology. 
15 (3): 267–273. 
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We previously saw that an autoassociative network learned by updating the weights 
fractionally by the outer product of the input data with its transpose 𝑋 ∙ 𝑋𝑇.  To implement 
Oja’s rule, we posit a new layer of output neurons 𝑍 which is equal to 𝑋 ∙ 𝑊, and update the 
weights with 𝑋𝑇 ∙ 𝑍 scaled by a learning rate.  In the example on the slide, I have generated 3 
noisy variables 𝑥 that are partially correlated, that might for example pertain to the size, tilt 
and brightness of a set of objects. After learning, the patterns of correlation are encoded in 
the weights linking sensory inputs 𝑋 to the latents 𝑍, and for any random activation of 𝑍 we 
can reconstruct these correlation patterns through multiplication with the transposed weights. 
The network has learned, for example, that “big things are bright”. 
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As mentioned above, an unsupervised network does not explicitly learn to map an input onto 
an output. Rather, in re-encodes its inputs in a new, compressed form. As such, there is no 
immediately obvious metric for whether a network is encoding information a “correct” or an 
“incorrect” way that is comparable to the decisions made by a supervised network. 
Nevertheless, it is possible to test the efficacy of the encoding by using the unsupervised model 
as a predictive network, by holding out (after training) a subset of the inputs and asking if the 
network can reconstruct them correctly. For example, on presented with a greyscale image of 
a bunch of bananas, the network should be able to correctly “predict” that they are yellow, by 
“decoding” information from the latent units. 
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Interestingly, this is – of course – exactly what biological brains are doing.  The human brain is 
forever making predictions about forthcoming sensory events, even when there is no particular 
reward that is likely to accrue from doing so85.  Here is some evidence from an imaging study 
that dovetails with the example given above: participants were shown a series of greyscale 
images of objects with a clear associated colour (such as a banana). Using a separate localiser, 
the authors identified patterns of activity that were elicited when viewing different colours 
(such as yellow). They then asked whether the associated colour patterns were reinstated by 
the relevant greyscale images – for example whether the grey bananas elicited a pattern for 
“yellow”. They found that they did, as if participants were implicitly “predicting” the missing 
colour of the objects. 
 

                                                      
85 This point has been made in so many ways that it’s hard to know what to cite, but two books that 
particularly influenced me some years ago were I of the Vortex: From Neurons to Self by Rodolfo Llinas, and 
On Intelligence by Jeff Hawkins, who later went on to found Numenta, a notable AI startup company.  
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Many of the most successful contemporary unsupervised learning methods are based around 
the notion of “autoencoding”. A network is trained on a set of images, and the loss is the 
reconstruction error, i.e. a quantity that is inversely proportional to the network’s ability to 
predict the very image it is being shown.  Of course, there is a trivial way to solve this problem 
– if the network weights converge to the identity matrix (zeros everywhere and ones of the 
diagonal) then every output will be identical to its input. But remember that the point of 
unsupervised learning is to reduce the dimensionality of the input whilst preserving as much 
of the variance as possible. Thus, the number of hidden (or “latent”) units, typically denoted 𝑍  
must be smaller than the number of input units, precluding the network from learning identity 
weights.  This forces the network to learn an efficient code. 
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In fact, if the network successfully captures the true data-generating latent variables, then it 
should be possible to decode from the network new images that correspond to realistic data 
samples. In other words, after training the network to encode images of cats, it should be 
possible by randomly activating the latent units to decode realistic-looking images of new cats, 
as if the network were “imagining” what cats might be possible. In other words, the network 
has learned a “generative model” of cats and can generate cats.  The human cognitive ability 
to imagine and mentally simulate the environment, thus, relies on learning such a “generative 
model” of the world. 
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So how do you actually do this? Well, one approach would simply be to use Hebbian learning, 
in other words to try and learn the principle components of natural images.  In practice, 
however, this doesn’t tend to yield very good predictions about new images, and the network 
learns a set of filters that are quite different from those observed in biological visual systems. 
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One way to improve the filter quality is to impose a sparsity constraint, i.e. to add a term to 
the loss function that encourages as few neurons as possible to have nonzero weights.  Using 
this additional sparsity cost, an unsupervised network trained on natural images will learn 
components that correspond to a set of Gabor filters with varying orientation and spatial 
frequency, just like cells in V1. However, although reconstruction of trained images is 
reasonably good, this class of network shows limited ability to “imagine” realistic new images 
from the full distribution of natural scenes. 
 

7.3. Variational autoencoders 
 
 

 
However, with the addition of some further computational tools, it’s possible to build a 
network that can learn the distribution over reasonably complex naturalistic inputs, such as 
handwritten digits. The variational autoencoder uses several stacked encoding/decoding 
layers. 
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However, the key differences is that what is encoded in the hidden units are values 
corresponding to the mean and variance of the latent variables. The decoder then samples 
from these distributions to generate new data. The VAE86 incorporates a distinct cost (KL 
divergence) that attempts to keep the sampling distributions as close as possible to standard 
normal (e.g. mean = 0, std = 1). That means that the data distributions are smoothly distributed 
over the latent space, permitting new data to be generated from this space through 
interpolation (without this KL penalty, the there are gaps in the latent space, and sampling 
from these areas will produce nonsense images). 
 
 

                                                      
86 This paper has nice explanations: https://arxiv.org/pdf/1606.05579.pdf. Also see this website: 
http://kvfrans.com/variational-autoencoders-explained/ and this tutorial: https://arxiv.org/abs/1606.05908. 
 

https://arxiv.org/pdf/1606.05579.pdf
http://kvfrans.com/variational-autoencoders-explained/


November 2018 173 

 
 
In fact, it was recently discovered that by increasing the strength of the KL penalty, in order to 
place greater pressure on the network to learn sensible latent variables, it is possible to learn 
human-interpretable factors of variation even from complex high-dimensional domains such 

as faces. The slide shows reconstructions from a so-called -VAE87 which incorporates this 

penalty (the  is the parameter that controls the relative balance of reconstruction error to 
the KL divergence).  By gradually varying activation in the latent units and reconstructing, it is 
possible to generate new faces with varying degrees of rotation, smile and hair coverage, as if 
the network has learned some of the “true” factors that determine how faces vary. 
 
 

                                                      
87 https://openreview.net/pdf?id=Sy2fzU9gl 
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A yet more powerful generative model, based on similar principles, has recently been applied 
to a longstanding problem in computer vision, know as the inverse graphics problem: given a 
small number of snapshots taken from a 3D environment, can you “imagine” the perspective 
from a new angle? The network was trained on observation data and camera angle taken from 
complex synthetic images showing tabletop objects and mazes, and trained to predict the new 
viewpoint conditional on the camera angle. Using a deep generative model with a similar form 
to the autoencoder discussed above, the network was able to do this with a high degree of 
accuracy. 
 

7.4. The Bayesian approach 
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The unsupervised learning framework described here shares a theoretical stance with a long 
tradition in psychology that sees perception as an inference problem, with optimal solutions 
given by Bayes’ rule. In other words, the brain evolved to encode 𝑝(𝑥|𝑥), i.e. the probability 
of a given pattern of neuronal activation conditional on the inputs, and to decode 𝑝(𝑥|𝑥), i.e. 
the probability of the data given the hypothesis. 
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In psychology and sensory neuroscience, this approach is most often applied to simple 
experimental domains, such as psychophysical studies, where the state space is small (e.g. 
consists of a space of possible angles of orientation) and the filters are of known form (e.g. 
Gaussian tuning curves). In this setting, we can see the encoding step as estimating the 
likelihood of neuronal response given the input, i.e. providing the population activity; and the 
decoding step as computing some posterior distribution over input states, which depends both 
on the likelihood term and any relevant prior beliefs, which may accrue from top-down signals. 
Marginalisation on the posterior gives a probability of one response vs. another (for example, 
in a binary choice task). 
 

 
 
Psychologically and neutrally, this work draws on evidence that human perception is strongly 
influenced by prior beliefs, such as the fact that light comes from above when interpreting 
shape from shading.  In many models, perception involves a reciprocal interaction between 
bottom-up processes (whereby perceptual inputs influence beliefs) and top-down processes 
(whereby beliefs help shape perception). 
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Moreover, the notion that there is an economy between bottom-up (encoding) and top-down 
(decoding) helps us understand why sensory systems – and in particular vision – prominently 
include not just feedforward but also feedback connections. In fact, in the primate visual 
systems, feedback connections are more prevalent than feedforward connections, which 
might be interpreted as supporting the “reconstructive” nature of perception. 
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Many other findings support the view that perception is a reconstruction that incorporates our 
prior beliefs.  For example, on viewing the upper image for the first time, you might struggle 
to interpret it; but having seen the image below, it becomes immediately apparent what it is.   
 

 
 
Further evidence, akin to the banana example above, comes from imaging studies. For 
example, in this striking fMRI study, the FFA was found to be more active to a nonface that 
resembled a face by virtue of the context than it was to a decontextualized actual face.   
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7.5. Predictive coding 
 

 
 
A mature computational framework, known as predictive coding, argues that perception 
unfolds in successive layers of the visual hierarchy, with prior beliefs feeding back via top-down 
signals to “explain away” sensory inputs at each stage, such that only the unexplained portion 
of sensory signals (sensory prediction errors) are passed forward to adjust beliefs.  This theory 
explains a variety of interesting phenomena, including the fact that BOLD signals and single-
cell responses tend to be particularly strong when inputs are unexpected.  In fact, one paper 
argues that repetition suppression, the ubiquitously observed attenuation of neural signals to 
the second and subsequent presentations of a stimulus, may be in fact be a reduction in 
sensory prediction errors in under the predictive coding scheme. 
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Predictive coding offers an elegant account of extra-classical receptive field effects, such as 
end-stopping, and also of classic visual phenomena, such as contextual facilitation. 
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Polat and Sagi have provided data supporting this pattern of contextual facilitation, as 
hypothesised by predictive coding, from elegant psychophysical work. 
 
 
 
 

 
 
Finally, we can even see evidence for extraclassical effects in BOLD signals. In this paper from 
Smith & Muckli, participants viewed a series of natural scenes with and without an occluded 
quadrant. The authors first identified voxels that were retinotopically mapped to the occluded 
portion of the image, and then asked whether, from these voxels alone, it might possible to 
decode the contents of the image.  They found that it was. The only reasonable explanation 
for this finding is that those voxels are receiving predictive feedback signals from other brain 
areas, for example more anteriorly, that have access to the image information via neurons 
mapped to other portions of retinotopic space. 
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8. Building a model of the world for planning and 
reasoning 
 
 

8.1. Temporal abstraction for model-free RL and the dACC 
 

 
 
 
Let’s begin by taking a step back to lecture 2, where we discussed model-free RL. You’ll recall 
that we converged on a circuit-level description of how model-free RL might be implemented 
in biological brains, via parallel circuits linking cortex and striatum, with dopaminergic signals 
carrying a TD error signal that allows connections for rewarded actions to be strengthened. 
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However, these “model-free” reinforcement learning methods have some important 
limitations. Consider the environment shown on the slide above.  The agent starts from the 
red location and has to reach the green. How well is it going to do? Well, we know that (for 
example) TD learning approximates the Bellman equation, so it should eventually learn the 
optimal value function. But this is going to be very, very slow, because to get to the goal it has 
to pass through 2 doorways under an essentially random policy (no knowledge of the value of 
actions).  In general, model-free RL scales very poorly to environments (like the real world) 
where there are innumerable states, and rewards are sparsely distributed.  In the final part of 
this lecture, we will consider some methods that have been developed to deal with this 
problem, that are focussed around the idea of temporal abstraction88. 
 

2.7. Hierarchical reinforcement learning and temporal abstraction 
 
 
 
 

                                                      
88 Hierarchically organized behavior and its neural foundations: a reinforcement learning perspective. Botvinick 
MM, Niv Y, Barto AC. Cognition. 2009 Dec;113(3):262-80. 
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Temporal abstraction is made possible when states can be meaningfully clustered in time. 
Consider, for example, the “four rooms” environment illustrated above.  Whilst there are many 
ways that the trajectory to goal might be represented, not all of them are equally useful or 
compact. One particularly efficient code represents the trajectory hierarchically, much as a 
human might instruct another: go to the doorway, and from thence to the second doorway, 
and then to the goal. If an agent could select not just among primitive actions (up, down left, 
right) but also among chunked action sequences (‘go to the doorway’), then learning would 
proceed much faster.  
 



November 2018 185 

 
 
This is the principle by which “hierarchical reinforcement learning” (HRL) works.  Let us assume, 
for the sake of argument, that a set of key states in the environment are pre-designated as 
having special status, by virtue of their importance for any given plan (such as the doorways in 
the 4-rooms environment). We will call these states “subgoals”. These subgoal states are 
earmarked as those where an option may be initiated or terminated. An option specifies a 
series of actions that are executed until execution.  Options are learned based on an intrinsic 
reward signal – known as a pseudoreward – that is emitted when a subgoal is reached. The 
agent can thus first learn to reach a subgoal (and receive a pseudoreward), and can then at 
future timepoints opt to select the entire set of actions that will take it to the relevant subgoal.  
The figure above illustrates the computations executed by an HRL agent as it makes a set of 6 
transitions through an MDP.  On step 2, it reaches an initiation state and selects option 𝜎, 
making primitive actions 𝑎 until the termination state is reached on step 6 and a pseudoreward 
(yellow star) is emitted.  This pseudoreward is backed up to increase the value of the primitive 
actions. On the next step, the agent reaches the goal, and a real reward is incurred; this is 
backed up to the option selection stage, increasing the probability that this option will be 
selected in the future. 
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HRL works, subject to some caveats. For example, an RL agent learning to navigate to a goal 
location in the four rooms environment learns faster with options than without. However, one 
critical aspect of HRL is that the subgoals need to be appropriately prespecified.  For example, 
if the subgoals are placed not at the doorways but at the “window” locations shown in the 
right-hand plot, the HRL agent does worse than an agent without options.  More generally, the 
problem of how the agent (magically) knows which states should be subgoals is unsolved, 
dramatically limiting the utility of HRL in real world settings. 
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Nevertheless, there is neural evidence that animals engage in a form of sequential actions 
selection not dissimilar to that proposed by the options framework, and that its 
implementation depends on the integrity of the dorsal anterior cingulate cortex (dACC).  One 
key assumption of the options framework is that a specific mechanism exists that ensures that 
the option is followed once initiated (at least when it is reasonable to do so) rather than other 
primitive actions that are not specified by the option being selected.  Lesions of the dACC make 
macaque monkeys more likely to switch away from a consistent course of action, such as 
selecting a response with high reward probability in a reversal learning task, as if they were 
less prone to pursue a fixed course of action (the same lesions have little or no effect on the 
animals’ tendency to reverse at the correct time, relative to control animals)89.  Holroyd and 
Yeung90 have suggested that implementing sequential action control in a manner similar to 
that proposed by HRL model may be the cardinal function of the dACC, with similar views 
proposed by Botvinick91. 
 

 
 
One further prediction that arises from the options framework is that the agent needs to 
monitor for the presence of a termination state, at which point the option is no longer followed 
and a new action can be selected.  Shidara and Richmond (2002) showed that when multiple 
sequential actions need to be made to elicit a reward, dACC neurons code for proximity to the 

                                                      
89 Optimal decision making and the anterior cingulate cortex.Kennerley SW, Walton ME, Behrens TE, Buckley 
MJ, Rushworth MF. Nat Neurosci. 2006 Jul;9(7):940-7 
90 Motivation of extended behaviors by anterior cingulate cortex. Holroyd CB, Yeung N. Trends Cogn Sci. 2012 F 
91 Hierarchical reinforcement learning and decision making. Botvinick MM. Curr Opin Neurobiol. 2012 
Dec;22(6):956-62. 
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sequence termination92.  Others have shown that the dACC BOLD signals are sensitive to the 
proximity to a switch point in a foraging setting. 
 
   

 
 
Further evidence for the role of the dACC in an HRL-like process comes from an imaging study93 
that directly tested for the pseudoreward signals that are predicted by HRL. The authors 
designed a task that involved navigating first to a subgoal location, where no reward was 
incurred (driving a truck to pick up a parcel) and then to a goal location for reward (on delivery 
of the parcel to a second location).  The authors induced pseudo-prediction errors by switching 
the subgoal in such a way that it neither shortened nor lengthened the overall trajectory but 
increased or decreased the subgoal distance.  These pseudo prediction errors were correlated 
with BOLD signals in the dACC. 
 
 
 
 
 
 
 
 

                                                      
92 Anterior cingulate: single neuronal signals related to degree of reward expectancy. Shidara M, Richmond BJ. 
Science. 2002 May 31;296(5573):1709-11. 
93 A neural signature of hierarchical reinforcement learning. Ribas-Fernandes JJ, Solway A, Diuk C, McGuire JT, 
Barto AG, Niv Y, Botvinick MM. Neuron. 2011 Jul 28;71(2):370-9. 
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Bringing all these finding together, thus, we can expand our model of how RL is implemented 
in the brain, to include new modules that engage in sequential control over actions. These may 
be associated with the dACC, although other regions such as the DLPFC may also play a part. 
 

 
 
So, we began with these structures as candidates for a brain system that implements action 
selection.  We have seen that the striatum codes the value of actions, as predicted by TD 
learning, via a gating signal from midbrain dopamine neurons.  The dACC facilitates extended 
action selection, in a way that resembles HRL. 
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8.2. Multiple controllers for behaviour 
 
 

 
 
However, there may be other mechanisms, beyond model-free RL, by which biological agents 
select temporally extended actions in complex environments.  Humans, and probably other 
animals, do not have to repeatedly sample the world in order to formulate plans of action. 
Indeed, many environments do not permit the sort of slow learning by experience that occurs 
during model-free RL. For example, when deciding whom to marry, or what career to pursue, 
you don’t generally get to try out hundreds of options and learn gradually what works and 
what doesn’t. Rather, you have to select a course of action by engaging in mental simulation 
(or planning) – to consider what the likely outcomes of behaviour might be by imagining their 
consequences.  In humans, planning is particularly associated with the functioning of the intact 
prefrontal cortex. When the PFC is lesioned, humans tend to show disordered patterns of 
everyday behaviour – for example, they will fail to wash or pay their taxes, they act impulsively 
or in a socially inappropriate fashion. Shallice and Burgess94 captured these behaviours by 
constructing tasks that were based outside the laboratory and resembled everyday activities, 
such as shopping. In their multiple errands task, PFC patients failed to follow a simple set of 
instructions on a shopping trip (such as, “buy a newspaper”, “don’t enter the same shop twice”, 
and “don’t steal anything”).  PFC patients also perform worse than controls on lab-based tests 
of planning, such as the Tower of Hanoi task, in which a set of disks have to be rearranged onto 
three poles without a larger disk ever lying on top of a smaller one. 
 
 

                                                      
94 Shallice T., Burgess P. W. Deficits in strategy application following frontal lobe damage in man. Brain. 
1991;114:727–741 
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So one way to think about behaviour in biological agents is that it is controlled by (at least) two 
distinct systems: one which learns slowly from experience (the model-free system) and 
another that allows for mental simulation (the model-based system).  The model-based system 
is so called because planning requires a model of the world – in other words, it needs the agent 
to explicitly encode the transition matrix which defines how states of the world are organised 
with respect to one another.  Full specification of a world model allows the agent to “imagine” 
different courses of action and their likely ultimate consequences, and to choose proximal 
actions that lead gradually towards rewarding outcomes, without ever having taken the chosen 
path before. For example, you might imagine that if you study hard then you will pass your 
exams and go on to receive a high-paying job and be able to buy a yacht, if you thought that 
owning a yacht would be a rewarding experience. Notably, you wouldn’t ever have had to sat 
an exam, taken a job interview, or gone sailing in order to formulate this course of action – if 
your world model is accurate, you can use it for planning. 
 
Critically, model-based and model free learning have complementary costs and benefits95.  
Model-free learning is fast and efficient, but it is also inflexible. Because it involves learning 
slowly from experience, obtaining summary estimates of the value of different states by 
averaging across repeated encounters, model-free estimates change only slowly. This means 
that if the world changes rapidly, then for a purely model-free agent, state-action value 

                                                      
95 Daw ND, Niv Y, Dayan P. Uncertainty-based competition between prefrontal and dorsolateral striatal 
systems for behavioral control. Nat Neurosci. 2005;8:1704–1711. Ray J. Dolan, Peter Dayan. Goals and Habits 
in the Brain. Neuron. 2013 Oct 16; 80(2): 312–325. 
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estimates may rapidly become obsolete.  Model-based learning and deciding, however, is 
computationally costly, because it requires the agent to learn about the world (i.e. to know 
what state/action combinations are likely to lead to which states), and moreover, it requires 
the agent to search through a potentially very large space of possible outcomes.  For example, 
it’s very time-consuming to imagine what the precise consequences of every menu choice 
might be in a restaurant or course option might be on a university degree.  It’s likely, thus, that 
biological agents deploy both systems and that there is some arbitrage mechanism that 
determines whether to follow a model-free or a model-based policy at any moment. 
 

 
 
A common way of thinking about planning is that it involves a process of searching through a 
“tree” of possible states that could be encountered. For example, if you are in the kitchen and 
you are hungry, you might be able to imagine turning left to look for food in the fridge, or right 
and look in the oven. If you look in the fridge, you might imagine looking on the bottom shelf 
and recall that there is nothing there, or on the top shelf where there is a tasty apple96.  Of 
note, you don’t actually need to move a muscle do this – you can easily formulate a plan to go 
and raid the fridge in search of a snack whilst you are sitting on the sofa watching TV. 
 
Tree search methods, such as monte-carlo tree search (MCTS), involve several computational 
steps that specify how to choose which states to search (it might be, for example, that you left 
a tasty pie in the oven). One common method, known as UCB or upper confidence bound, 
directs the search towards those states whose value is less known. Another problem is how to 
“back up” the reward once imagined. You need to learn – having imagined obtaining the apple 
– that the fridge has high value, as does the kitchen itself.  Tree search algorithms typically 
“back up” discounted rewards from each state to its predecessors, in a fashion similar to 
model-free RL, but occurring in a more explicit fashion. 

                                                      
96 This is a bad example because apples lose their taste in the fridge. 
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As noted above, model-free and model-based policies have complementary costs and benefits, 
and it’s likely that humans and perhaps other animals use a mixture of the two. Daw and 
colleagues97 developed a task that tests for this explicitly, by asking participants to perform a 
sequential decision or “two-step” bandit task, in which a first-level choice yields no direct 
rewards but offers the opportunity to transition to one of two distinct states with time-varying 
payout magnitude.  Critically, the authors introduced a manipulation whereby choices at stage 
1 occasionally (30% of trials) transitioned to the unchosen level 1 state.  Model-free and model-
based systems make different predictions about how participant should respond after having 
made such a rare transition (e.g. choose B, move to C) and been rewarded at level 2 (e.g. for 
C1). The model free system does not know about the state transition matrix, and thus, will back 
up the reward to the relevant actions (choose B, choose C1). It thus predicts that on the 
subsequent trial, all other things being equal, a choice of B is more likely at the start state. 
However, the model-based system knows that the reward at C1 is more likely to be incurred 
once again by a choice to C, and thus predicts that this will be more likely on the next trial.  As 
can be seen from the behavioural data, humans acted as if their choices were guided by a 
mixture of model-based and model-free policies. 
 
There has been a great deal of subsequent research using this task, which cannot be 
summarised here, but broadly, there is evidence that manipulations that impair prefrontal 
function, including TMS and stress-testing98, shift the balance from model-based towards 

                                                      
97 Daw ND, Gershman SJ, Seymour B, Dayan P, Dolan RJ. Model-Based Influences on Humans’ Choices and 
Striatal Prediction Errors. Neuron. 2011;69(6):1204–1215. doi: 10.1016/j.neuron.2011.02.027 
98 Working-memory capacity protects model-based learning from stress 
A. Ross Otto, Candace M. Raio, Alice Chiang, Elizabeth A. Phelps, Nathaniel D. Daw 
Proc Natl Acad Sci U S A. 2013 Dec 24; 110(52): 20941–20946; The Curse of Planning: Dissecting multiple 
reinforcement learning systems by taxing the central executive 
A. Ross Otto, Samuel J. Gershman, Arthur B. Markman, Nathaniel D. Daw Psychol Sci. 2013 May; 24(5): 
10.1177/0956797612463080.  
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model-free behaviour, consistent with the role of PFC in model-based planning. However, the 
relative contributions of different brain regions involved in reward-guided decision-making to 
computing value signals predicted by the two approaches remains somewhat unclear99. 
 

 
 
As an aside, it’s worth pointing out that there are multiple mechanisms by which imagining 
possible state transitions might facilitate learning and decision-making. For example, it’s 
possible that the model-based and the model-free system interact. One theory that we have 
already encountered is that the model-based system might be used to train the model-free 
system.  This is formalised in a machine learning method known as DYNA, in which the agent 
learns the state transition matrix explicitly but doesn’t plan – rather it uses imagined 
experience to train the model-free system via TD learning or a similar model-free update rule.  
DYNA greatly accelerated learning on tasks in which there are many states or rewards are 
sparse, because it allows the agent to learn rapidly from reimaging past experiences. 
 

                                                      
99 The ubiquity of model-based reinforcement learning Bradley B Doll, Dylan A Simon, Nathaniel D Daw Curr 
Opin Neurobiol. 2012 Dec; 22(6): 1075–1081. 
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In lecture 6, we have already discussed the notion that hippocampal replay might involve 
exploration of a model of the world (e.g. replaying memories to consolidate them from 
hippocampus to the cortex, either during sleep or quiet resting, or at key points during a task).  
However, it’s also tempting to think of replay as a potential neural marker of a forward or 
backwards search through a tree of possibilities.  This paper from Kurth-Nelson and 
colleagues100 suggests that even in humans, it may be possible to identify neural markers of 
planning that resemble replay (or “preplay”).  Participants planned routes through a series of 
objects which were associated with variable reward, attempting to formulate a plan that 
maximised their reward.  The authors used MEG in concert with multivariate decoded to 
identify neural signals associated with each of the states, and then decoded these states during 
planning time, when participants were deliberating about which object route to take. The 
authors found evidence for backwards replay (with some examples of forwards replay), i.e. 
neural signals for a state that would subsequently be chosen was more likely to be followed by 
those for a state that preceded it. 
 

                                                      
100 Fast Sequences of Non-spatial State Representations in Humans Zeb Kurth-Nelson, Marcos Economides, 
Raymond J. Dolan, Peter Dayan Neuron. 2016 Jul 6; 91(1): 194–204. 
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In AI research, tree search has a long history, and we have already encountered search-based 
algorithms that led to strong performance in complex domains, such as chess. 
 
 

 
 
However, as we discussed, some other problems, such as Go, until recently remained elusive 
because of the very high branching factor, i.e. the rate at which the tree grew in simulation 
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(because, for example, of the number of possible positions where a piece could be placed).  
More recent approaches combine deep reinforcement learning and tree search101, using a 
convolutional neural network to learn the value of different board states, and to use this 
knowledge search more efficiently through the tree of possible moves.  As we have seen 
previously, it is often through combining machine learning approaches to resemble the 
“modular” brains that have evolved in biological systems that the strongest performance is 
elicited. 
 

8.3. Cognitive maps and the hippocampus 
  

 
 
At the start of this course, we discussed how one of the great challenges of building AI systems 
that display human-like intelligence is the tremendous richness of human knowledge – humans 
know stuff.  What we mean by this is that humans have a rich model of the world, that they 
can use for mental simulation and planning.  However, as we have seen, planning is 
computationally costly. How can we encode world knowledge in a way that is useful for 
planning and mental simulation, that avoids the potentially prohibitive costs of imagining every 
possible outcome? 
 
One argument is that the human mind is special because it has evolved to represent 
information about the world in a variety of different, but useful formats – and to translate 
effectively between them when making inferences. For example, think about your knowledge 
of Paris. You may have been there – in which case you may retain vivid episodic memories of 
your trip, or a high-dimensional representation of Paris. However, Paris may be represented in 
your brain in other ways. You. Might associate Paris with Berlin, or with eating snails, or with 
the Notre Dame – i.e. with other stimuli that you might have co-experienced in various ways.  

                                                      
101 Find papers, information and more here: https://deepmind.com/research/alphago/ 
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You also have various low-dimensional representations of Paris. You might be able to visualise 
it on a map, or to recall the subway is laid out, which is a 2D or “allocentric” representation. 
You even have a 1D representation of Paris – for example, you know that if all the cities in 
France were ordered according to their size, i.e. on a line, then Paris would be at one end, 
because it is the largest. 
 
Another way of framing this contention is that we have evolved to represent the world as a 
series of maps – structured representations that encode information in a useful way. This 
might allow planning to proceed not just over individual states (such as moves in a game of 
Go) but also by taking into account the structure – i.e. the topology and geometry – of states 
in the world102. 
 

 
 
 
We’ve known for a long time that even rodents behave as if they form a “map-like” 
representation of the world, i.e. that they understand the geometry of space in a way that 
cannot be explained by model-free RL alone. For example, Tolman trained rats to reach a 
reward by exiting a circular environment and following a passageway with several twists and 
turns to a goal location.  At test, the circular environment was changed to offer multiple exit 
routes, and the rats on the very first trial chose the arm that would have led directly to the goal 
taught during the training phase. In other words, the animals can make “zero-shot” inferences 
about the world given an understanding that space is organised in two dimensions. 
 

                                                      
102 What Is a Cognitive Map? Organizing Knowledge for Flexible Behavior. Behrens TEJ, Muller TH, Whittington 
JCR, Mark S, Baram AB, Stachenfeld KL, Kurth-Nelson Z. Neuron. 2018 Oct 24;100(2):490-509. doi: 
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We have also known for a long time that one-shot inferences about a goal location are 
disrupted after hippocampal damage103.  The hippocampus is an excellent candidate to encode 
an allocentric map of space, with states encoded in place cells, which fire at a specific location 
in a testing environment. 
 

 
 

                                                      
103 http://www.scholarpedia.org/article/Morris_water_maze 
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One of the requirements of model-based control is that the transition matrix is learned during 
encounters with the world. There is evidence from a large body of work focussed on episodic 
encoding into long-term memory that the hippocampus learns associations between words 
and objects, such as faces and places104.  However, statistical learning of the transition matrix 
in the human hippocampus is perhaps most clearly illustrated by this study from Shapiro and 
colleagues, in which sequences of abstract images (fractals) were presented, with some 
transitions frequent and others rare. Multivoxel patterns in the hippocampus became more 
similar for fractals that frequently occurred in succession, as if this structure were encoding 
the temporal association between adjacent states. Note that similar effects have been 
reported in the neocortex, but after more prolonged training105, perhaps indicative of a 
consolidation process via CLS or a related mechanism. 
 
 

 
 
More recent studies have shown that map-like representations exist in other MTL structures, 
such as the medial entorhinal cortex.  In this statistical learning paradigm from Garvert et al, 
participants first viewed a sequence of objects with transitions determined by a 2D map with 
hexagonal structure106. They were then shown a subset of transitions (object-object pairs) in 
random order, and repetition suppression (RS) was measured as an index of association. By 
measuring RS and projecting the data back into 2 dimensions (using MDS) the authors could 
recapitulate the structure of the map in the medial ERC. 

                                                      
104 Neocortical connectivity during episodic memory formation. Summerfield C, Greene M, Wager T, Egner T, 
Hirsch J, Mangels J. PLoS Biol. 2006 May;4(5):e128. Epub 2006 Apr 18. 
105 Neural organization for the long-term memory of paired associates. Sakai K, Miyashita Y. Nature. 1991 Nov 
14;354(6349):152-5. 
106 A map of abstract relational knowledge in the human hippocampal-entorhinal cortex. Garvert MM, Dolan 
RJ, Behrens TE. Elife. 2017 Apr 27;6. 
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Other studies have shown how the hippocampus can be used for inference about rewards 
using a model of the world. For example, in sensory preconditioning, two stimuli S1 and S2 are 
first associated without any reward.  Subsequently, S2 is paired with a positive or negative 
outcome.  At test, participants are asked to choose between S1 stimuli whose S2 partner was 
rewarded or not.  In this study by Wimmer and colleagues107, BOLD signals in the hippocampus 
were stronger for those S1 stimuli associated with rewarded than unrewarded S2 stimuli, at 
least in those participants that showed the strongest behavioural bias towards S1+ stimuli. 
 

                                                      
107 Preference by association: how memory mechanisms in the hippocampus bias decisions. Wimmer GE, 
Shohamy D. Science. 2012 Oct 12;338(6104):270-3. 
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Another paradigm that reveals the role of the hippocampus in model-based inference over 
states is the paired associate inference (PAI) paradigm, in which animals learn two associations 
(A-B, B-C) and are tested on their knowledge of A-C.  PAI is abolished by hippocampal lesions 
in rodents108. 
 

 

                                                      
108 Conservation of hippocampal memory function in rats and humans. Bunsey M, Eichenbaum H. Nature. 1996 
Jan 18;379(6562):255-7. 
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8.4. Hierarchical planning 
 
Using a related task in the scanner, Zeithamova et al109 showed that hippocampal BOLD 
predicts the degree of reactivation as demonstrated by mutivoxel pattern association between 
items A and C during the PAI task. However, there are some idiosyncrasies to this study (why 
does hippocampal BOLD *decrease* predict reactivation index?). 
 
 

 
 
These experiments show that for simple paired associate learning, the hippocampus seems to 
encode transitions and allow novel inferences. However, as we have seen, the computational 
cost of inference grows with the size of the map, i.e. the number of states.  Thus, for effective 
planning, agents need to learn a model of the world that is structured in an efficient fashion, 
i.e. with representations over multiple spatial and temporal scales. For example, when 
planning a journey on the London Underground, you don’t need to consider. Every single 
station en route to your journey – it’s often sufficient to know how which line to take and where 
to change. In other words, your journey is planned not only over states (e.g. King’s Cross) but 
also over contexts (e.g. the Piccadilly Line).  In other words, planning is hierarchical. 
 

                                                      
109 Hippocampal and ventral medial prefrontal activation during retrieval-mediated learning supports novel 
inference. Zeithamova D, Dominick AL, Preston AR. Neuron. 2012 Jul 12;75(1):168-79. 
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To better understand hierarchical planning, Balaguer and colleagues110 asked humans to learn 
to make journeys (from a start state to a goal state) in a virtual subway network. Participants 
were not shown the map when navigating but had to select buttons to move between stations 
arranged in a subway-like graph.  An dACC region responded with higher signal at the 
bottleneck states (i.e. the intersections between lines, where a switch was possible). However, 
this region also encoded the cost of further planning (i.e. the distance to goal) not only in units 
of states (i.e. the number of stations) but only in units of contexts (i.e. number of lines).  In 
other words, this region may be helpful in using temporal abstraction to form plans. 
 

                                                      
110 Neural Mechanisms of Hierarchical Planning in a Virtual Subway Network. Balaguer J, Spiers H, Hassabis D, 
Summerfield C. Neuron. 2016 May 18;90(4):893-903. 
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Further evidence for this view comes from the finding that using RSA, the authors were able 
to decode the line (rather than the station) being currently occupied from the dACC, even 
though this information was not shown to participants. In other words, the medial PFC may 
encode a representation of the context over which a plan is being formed, to allow efficient 
routes to be charted through environments composed of multiple states. 
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In a related statistical learning study by Schapiro et al111, participants viewed sequences of 
fractals that were arranged to have a local community structure, forming “clusters” that were 
linked by unique bottleneck states. Much like in the Garvert study, the authors could decode 
a representation of the environment from BOLD signals in the MTL (here, the hippocampus, 
rather than the ERC), and they similarly found that the dACC responded with higher BOLD 
signals at the bottleneck states, where ‘higher-order’ transitions between clusters occurred. 
 
 

8.5. Grid cells and abstract conceptual knowledge 
 
 

 
 
Finally, let’s consider one of the most recent theories of how abstract representations are 
encoded in the brains of mammals. In addition to place cells (typically observed in the 
hippocampal CA1/CA3 region), in rodent ERC a different type of cell, known as “grid cells” 
exhibits a hexagonal lattice-like place field over different scales and phases, firing at regular 
intervals as the animal explores a testing box.  The 2017 Nobel Prize for Medicine was shared 
between the researchers who discovered place and grid cells. 
 
 

                                                      
111 Neural representations of events arise from temporal community structure. Schapiro AC, Rogers TT, 
Cordova NI, Turk-Browne NB, Botvinick MM. Nat Neurosci. 2013 Apr;16(4):486-92; Statistical learning of 
temporal community structure in the hippocampus. Schapiro AC, Turk-Browne NB, Norman KA, Botvinick 
MM.Hippocampus. 2016 Jan;26(1):3-8. 
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Computationally, one can understand grid cells as encoding the first eigenvector (or principal 
component) of place cell activity. To illustrate, in this study from the Derdikman lab112, the 
authors simulated a rat moving through a box with randomly scatter Gaussian place fields 
activated in sequence during movement trajectories.  If you compute the covariance between 
each place cell activity and every other, take the first PC, and project back into 2D space, you 
observe a fourfold lattice; if you additionally impose a constraint that the principal components 
cannot take negative sign (non-negative PCA), similar to cells which cannot have negative firing 
rates, then you can recover the same hexagonal lattice that is characteristic of grid cells.   Of 
course, the brain doesn’t have immediate access to the full covariance matrix, but we know 
from previous lectures that Hebbian learning implements an online eigenvalue decomposition 
according to Oja’s rule. The authors simulated this Hebbian learning using a simple shallow 
network and showed how grid cells could be learned from place cell activation. 
 
If grid cells encode the covariance among place cells, this is important for the learning of 
abstractions, because it suggest that they form a relational code, i.e. encode the pattern of 
activation among place cells, divorced from the particularities of sensory input113. 
 

                                                      
112 Extracting grid cell characteristics from place cell inputs using non-negative principal component analysis. 
Dordek Y, Soudry D, Meir R, Derdikman D. Elife. 2016 Mar 8;5:e10094. 
113 Navigating cognition: Spatial codes for human thinking. Bellmund JLS, Gärdenfors P, Moser EI, Doeller CF. 
Science. 2018 Nov 9;362(6415). 
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How can we link this notion of a relational, grid cell code for navigation to the need for efficient 
codes for hierarchical planning discussed earlier? In this theoretical paper by Stachenfeld et 
al114, they show how the grid code (because it learns the principal factors of variation in a 
trajectory of place cell activity) will naturally decompose the representation of space 
efficiently. For example, moving beyond the open arena considered in the Derdikman paper, 
if one considers the 4-rooms environment that we started with, a related analysis shows that 
the principal components (here, of a construct known as the successor representation115, 
related to the place code) decompose the environment into a sensible set of representations 
over multiple scales – the first component identifies one half of the environment relative to 
the other, and subsequent components index the individual rooms in each half of the 
environment. In other words, unsupervised learning on place-like representations might allow 
an agent to learn a hierarchical representation of a given environment, facilitating planning 
over multiple scales simultaneously (e.g. over rooms and loci within a room).  A similar analysis 
applied to a hairpin maze identified corridors and turnings, followed by loci within a corridor, 
etc. 
 
 
 

                                                      
114 The hippocampus as a predictive map. Stachenfeld KL, Botvinick MM, Gershman SJ. Nat Neurosci. 2017 
Nov;20(11):1643-1653. 
115 The Successor Representation: Its Computational Logic and Neural Substrates. Gershman SJ. J Neurosci. 
2018 Aug 15;38(33):7193-7200. 
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Using a clever fMRI approach, Doeller and Burgess116 showed that it is even possible to identify 
a signature of grid cell activity in humans.  Participants navigated through an open arena, and 
the authors reasoned that if grid cells exhibit habituation – a suppression of firing after they 
have been active – then successive trajectories that differ by in-phase multiples of 60° should 
elicit reduced activity relative to those that differ by out-of-phase multiples of 60°.  They found 
this pattern not only in the BOLD signal in ERC, but also in other regions potentially important 
for memory and model-based inference, such as the vmPFC. 
 

                                                      
116 Evidence for grid cells in a human memory network. Doeller CF, Barry C, Burgess N. Nature. 2010 Feb 
4;463(7281):657-61. 
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ERC grid cells may be important for mental simulation: when participants were asked to 
imagine making trajectories through a virtual environment (“Donderstown”) to one of 12 
locations arranged hexagonally from the start point, the ERC grid code in BOLD was observed 
at the time of planning, before any movement took place117. 
 
 

 

                                                      
117 Grid-cell representations in mental simulation. Bellmund JL, Deuker L, Navarro Schröder T, Doeller CF. Elife. 
2016 Aug 30;5. 
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All of this evidence comes from spatial cognition. It might be that grid-like codes encode 
relational information for space, but not for the potentially more complex relational structures 
that link objects, individuals, and abstract concepts.  However, as we have seen, we can think 
of objects as organised in a “map” as well – for example, the taxonomic map that organises 
animals according to their phylum, class or species.  Recently, evidence has emerged for sixfold 
symmetry in the coding of time and directional eye movements118, two nonspatial domains. 
 
 
 

 
 
Perhaps the best evidence for this comes from a recent paper119 in which participants viewed 
(and imagined) trajectories through a 2D “bird space” defined by leg and neck length.  The 
authors replicated the findings of Doeller and Burgess in this nonspatial domain, suggesting 
that grid codes may permit an efficient representation of the covariance more abstract spaces, 
including those that are learned de novo and do not relate to spatial navigation. 
 
 
 

                                                      
118 Hexadirectional coding of visual space in human entorhinal cortex. Nau M, Navarro Schröder T, Bellmund 
JLS, Doeller CF. Nat Neurosci. 2018 Feb;21(2):188-190; Mapping of a non-spatial dimension by the 
hippocampal-entorhinal circuit. Aronov D, Nevers R, Tank DW. Nature. 2017 Mar 29;543(7647):719-722. 
119 Organizing conceptual knowledge in humans with a gridlike code. Constantinescu AO, O'Reilly JX, Behrens 
TEJ. Science. 2016 Jun 17;352(6292):1464-1468. 
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